Suppr超能文献

一种使用整数线性优化、本地数据库搜索以及四极杆飞行时间或轨道阱串联质谱进行肽段鉴定的混合方法。

A hybrid method for peptide identification using integer linear optimization, local database search, and quadrupole time-of-flight or OrbiTrap tandem mass spectrometry.

作者信息

DiMaggio Peter A, Floudas Christodoulos A, Lu Bingwen, Yates John R

机构信息

Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544-5263, USA.

出版信息

J Proteome Res. 2008 Apr;7(4):1584-93. doi: 10.1021/pr700577z. Epub 2008 Mar 7.

Abstract

A novel hybrid methodology for the automated identification of peptides via de novo integer linear optimization, local database search, and tandem mass spectrometry is presented in this article. A modified version of the de novo identification algorithm PILOT, is utilized to construct accurate de novo peptide sequences. A modified version of the local database search tool FASTA is used to query these de novo predictions against the nonredundant protein database to resolve any low-confidence amino acids in the candidate sequences. The computational burden associated with performing several alignments is alleviated with the use of distributive computing. Extensive computational studies are presented for this new hybrid methodology, as well as comparisons with MASCOT for a set of 38 quadrupole time-of-flight (QTOF) and 380 OrbiTrap tandem mass spectra. The results for our proposed hybrid method for the OrbiTrap spectra are also compared with a modified version of PepNovo, which was trained for use on high-precision tandem mass spectra, and the tag-based method InsPecT. The de novo sequences of PILOT and PepNovo are also searched against the nonredundant protein database using CIDentify to compare with the alignments achieved by our modifications of FASTA. The comparative studies demonstrate the excellent peptide identification accuracy gained from combining the strengths of our de novo method, which is based on integer linear optimization, and database driven search methods.

摘要

本文介绍了一种通过从头整数线性优化、本地数据库搜索和串联质谱自动识别肽段的新型混合方法。使用从头识别算法PILOT的改进版本来构建准确的从头肽段序列。使用本地数据库搜索工具FASTA的改进版本,针对非冗余蛋白质数据库查询这些从头预测结果,以解析候选序列中任何低置信度的氨基酸。通过使用分布式计算减轻了执行多次比对带来的计算负担。本文展示了针对这种新的混合方法进行的广泛计算研究,以及与MASCOT针对一组38个四极杆飞行时间(QTOF)和380个轨道阱串联质谱的比较。还将我们针对轨道阱质谱提出的混合方法的结果与经过训练用于高精度串联质谱的PepNovo改进版本以及基于标签的方法InsPecT进行了比较。还使用CIDentify针对非冗余蛋白质数据库搜索PILOT和PepNovo的从头序列,以与我们对FASTA的修改所实现的比对结果进行比较。比较研究证明,结合基于整数线性优化的从头方法和数据库驱动搜索方法的优势,可以获得出色的肽段识别准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验