Baldi Ileana, Ciccone Giovannino, Merletti Franco, Gregori Dario
Unit of Cancer Epidemiology, C.P.O. Piemonte and University of Torino, Torino, Italy.
J Eval Clin Pract. 2008 Apr;14(2):316-20. doi: 10.1111/j.1365-2753.2007.00861.x.
RATIONALE, AIMS AND OBJECTIVES: The admission rate, including both first and recurrent events, is a clear overall measure of hospital utilization, its variability accounting for individual propensity to disease recurrence.
In this paper, we compared two variance estimators derived from the Poisson and negative binomial distribution of directly and indirectly age/gender-standardized hospitalization rates allowing for multiple events. The latter approach accommodates departures from the assumption of randomness of repeated events required by the Poisson distribution. We apply these methods to a retrospective cohort based on hospital discharge data in 2001 of Piedmont (north-western Italy) residents.
Estimated standard errors under the negative binomial for both directly and indirectly standardized rates result in almost twice those under the Poisson distribution.
Our analysis confirms that ignoring the typical non-random nature of repeated events underestimates the true variance of rates and can lead to biased optimistic interpretation of study results.
原理、目的和目标:包括首次事件和复发事件在内的住院率是衡量医院利用情况的一个明确的总体指标,其变异性反映了个体疾病复发的倾向。
在本文中,我们比较了两种方差估计量,它们分别来自于直接和间接年龄/性别标准化住院率的泊松分布和负二项分布,同时考虑了多次事件。后一种方法适应了泊松分布要求的重复事件随机性假设的偏离。我们将这些方法应用于一个基于2001年意大利西北部皮埃蒙特地区居民医院出院数据的回顾性队列研究。
直接和间接标准化率在负二项分布下估计的标准误几乎是泊松分布下的两倍。
我们的分析证实,忽略重复事件典型的非随机性质会低估率的真实方差,并可能导致对研究结果的有偏差的乐观解释。