Suppr超能文献

在存在重复事件的情况下计算住院率:影响及避免误解的对策。

Computing hospitalization rates in presence of repeated events: impact and countermeasures to avoid misinterpretation.

作者信息

Baldi Ileana, Ciccone Giovannino, Merletti Franco, Gregori Dario

机构信息

Unit of Cancer Epidemiology, C.P.O. Piemonte and University of Torino, Torino, Italy.

出版信息

J Eval Clin Pract. 2008 Apr;14(2):316-20. doi: 10.1111/j.1365-2753.2007.00861.x.

Abstract

RATIONALE, AIMS AND OBJECTIVES: The admission rate, including both first and recurrent events, is a clear overall measure of hospital utilization, its variability accounting for individual propensity to disease recurrence.

METHOD

In this paper, we compared two variance estimators derived from the Poisson and negative binomial distribution of directly and indirectly age/gender-standardized hospitalization rates allowing for multiple events. The latter approach accommodates departures from the assumption of randomness of repeated events required by the Poisson distribution. We apply these methods to a retrospective cohort based on hospital discharge data in 2001 of Piedmont (north-western Italy) residents.

RESULTS

Estimated standard errors under the negative binomial for both directly and indirectly standardized rates result in almost twice those under the Poisson distribution.

CONCLUSION

Our analysis confirms that ignoring the typical non-random nature of repeated events underestimates the true variance of rates and can lead to biased optimistic interpretation of study results.

摘要

原理、目的和目标:包括首次事件和复发事件在内的住院率是衡量医院利用情况的一个明确的总体指标,其变异性反映了个体疾病复发的倾向。

方法

在本文中,我们比较了两种方差估计量,它们分别来自于直接和间接年龄/性别标准化住院率的泊松分布和负二项分布,同时考虑了多次事件。后一种方法适应了泊松分布要求的重复事件随机性假设的偏离。我们将这些方法应用于一个基于2001年意大利西北部皮埃蒙特地区居民医院出院数据的回顾性队列研究。

结果

直接和间接标准化率在负二项分布下估计的标准误几乎是泊松分布下的两倍。

结论

我们的分析证实,忽略重复事件典型的非随机性质会低估率的真实方差,并可能导致对研究结果的有偏差的乐观解释。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验