Suppr超能文献

分位数回归提供了对速度数据更全面的分析。

Quantile regression provides a fuller analysis of speed data.

作者信息

Hewson Paul

机构信息

School of Mathematics and Statistics, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom.

出版信息

Accid Anal Prev. 2008 Mar;40(2):502-10. doi: 10.1016/j.aap.2007.08.007. Epub 2007 Sep 6.

Abstract

Considerable interest already exists in terms of assessing percentiles of speed distributions, for example monitoring the 85th percentile speed is a common feature of the investigation of many road safety interventions. However, unlike the mean, where t-tests and ANOVA can be used to provide evidence of a statistically significant change, inference on these percentiles is much less common. This paper examines the potential role of quantile regression for modelling the 85th percentile, or any other quantile. Given that crash risk may increase disproportionately with increasing relative speed, it may be argued these quantiles are of more interest than the conditional mean. In common with the more usual linear regression, quantile regression admits a simple test as to whether the 85th percentile speed has changed following an intervention in an analogous way to using the t-test to determine if the mean speed has changed by considering the significance of parameters fitted to a design matrix. Having briefly outlined the technique and briefly examined an application with a widely published dataset concerning speed measurements taken around the introduction of signs in Cambridgeshire, this paper will demonstrate the potential for quantile regression modelling by examining recent data from Northamptonshire collected in conjunction with a "community speed watch" programme. Freely available software is used to fit these models and it is hoped that the potential benefits of using quantile regression methods when examining and analysing speed data are demonstrated.

摘要

目前,在评估速度分布百分位数方面已经引起了相当大的关注。例如,监测第85百分位数速度是许多道路安全干预措施调查的一个共同特征。然而,与均值不同,t检验和方差分析可用于提供统计上显著变化的证据,而对这些百分位数进行推断的情况则要少见得多。本文探讨了分位数回归在对第85百分位数或任何其他分位数进行建模方面的潜在作用。鉴于碰撞风险可能随着相对速度的增加而不成比例地增加,可以认为这些分位数比条件均值更有意义。与更常用的线性回归一样,分位数回归允许进行一个简单的检验,即通过考虑拟合到设计矩阵的参数的显著性,以类似于使用t检验来确定平均速度是否发生变化的方式,来判断第85百分位数速度在干预后是否发生了变化。在简要概述了该技术并简要研究了一个关于剑桥郡引入标志前后速度测量的广泛发布数据集的应用之后,本文将通过研究与“社区速度监测”计划一起收集的北安普敦郡的最新数据,展示分位数回归建模的潜力。使用免费软件来拟合这些模型,希望能够展示在检查和分析速度数据时使用分位数回归方法的潜在好处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验