Suppr超能文献

不同类别的转运蛋白rBAT突变体导致I型胱氨酸尿症表型。

Distinct classes of trafficking rBAT mutants cause the type I cystinuria phenotype.

作者信息

Bartoccioni Paola, Rius Mònica, Zorzano Antonio, Palacín Manuel, Chillarón Josep

机构信息

Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain.

出版信息

Hum Mol Genet. 2008 Jun 15;17(12):1845-54. doi: 10.1093/hmg/ddn080. Epub 2008 Mar 10.

Abstract

Most mutations in the rBAT subunit of the heterodimeric cystine transporter rBAT-b(0,+)AT cause type I cystinuria. Trafficking of the transporter requires the intracellular assembly of the two subunits. Without its partner, rBAT, but not b(0,+)AT, is rapidly degraded. We analyzed the initial biogenesis of wild-type rBAT and type I cystinuria rBAT mutants. rBAT was degraded, at least in part, via the ERAD pathway. Assembly with b(0,+)AT within the endoplasmic reticulum (ER) blocked rBAT degradation and could be independent of the calnexin chaperone system. This system was, however, necessary for post-assembly maturation of the heterodimer. Without b(0,+)AT, wild-type and rBAT mutants were degraded with similar kinetics. In its presence, rBAT mutants showed strongly reduced (L89P) or no transport activity, failed to acquire complex N-glycosylation and to oligomerize, suggesting assembly and/or folding defects. Most of the transmembrane domain mutant L89P did not heterodimerize with b(0,+)AT and was degraded. However, the few [L89P]rBAT-b(0,+)AT heterodimers were stable, consistent with assembly, but not folding, defects. Mutants of the rBAT extracellular domain (T216M, R365W, M467K and M467T) efficiently assembled with b(0,+)AT but were subsequently degraded. Together with earlier results, the data suggest a two-step biogenesis model, with the early assembly of the subunits followed by folding of the rBAT extracellular domain. Defects on either of these steps lead to the type I cystinuria phenotype.

摘要

异二聚体胱氨酸转运蛋白rBAT-b(0,+)AT的rBAT亚基中的大多数突变会导致I型胱氨酸尿症。该转运蛋白的运输需要两个亚基在细胞内组装。没有其伙伴rBAT,b(0,+)AT不会迅速降解,但rBAT会迅速降解。我们分析了野生型rBAT和I型胱氨酸尿症rBAT突变体的初始生物合成过程。rBAT至少部分地通过内质网相关蛋白降解(ERAD)途径被降解。在内质网(ER)中与b(0,+)AT组装可阻止rBAT降解,且这一过程可能独立于钙连蛋白伴侣系统。然而,该系统对于异二聚体组装后的成熟是必需的。没有b(0,+)AT时,野生型和rBAT突变体以相似的动力学被降解。在b(0,+)AT存在的情况下,rBAT突变体的转运活性显著降低(L89P)或无转运活性,无法获得复杂的N-糖基化且不能寡聚化,这表明存在组装和/或折叠缺陷。大多数跨膜结构域突变体L89P不能与b(0,+)AT异二聚化并被降解。然而,少数[L89P]rBAT-b(0,+)AT异二聚体是稳定的,这与组装缺陷而非折叠缺陷一致。rBAT胞外结构域的突变体(T216M、R365W、M467K和M467T)能与b(0,+)AT有效组装,但随后被降解。结合早期结果,这些数据提示了一个两步生物合成模型,即亚基先进行早期组装,随后rBAT胞外结构域进行折叠。这两个步骤中任何一个出现缺陷都会导致I型胱氨酸尿症表型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验