Suppr超能文献

一种用于径向基函数网络的容错正则化器。

A fault-tolerant regularizer for RBF networks.

作者信息

Leung Chi-Sing, Sum John Pui-Fai

机构信息

Department of Electronic Engineering, the City Universityof Hong Kong, Kowloon Tong, Hong Kong.

出版信息

IEEE Trans Neural Netw. 2008 Mar;19(3):493-507. doi: 10.1109/TNN.2007.912320.

Abstract

In classical training methods for node open fault, we need to consider many potential faulty networks. When the multinode fault situation is considered, the space of potential faulty networks is very large. Hence, the objective function and the corresponding learning algorithm would be computationally complicated. This paper uses the Kullback-Leibler divergence to define an objective function for improving the fault tolerance of radial basis function (RBF) networks. With the assumption that there is a Gaussian distributed noise term in the output data, a regularizer in the objective function is identified. Finally, the corresponding learning algorithm is developed. In our approach, the objective function and the learning algorithm are computationally simple. Compared with some conventional approaches, including weight-decay-based regularizers, our approach has a better fault-tolerant ability. Besides, our empirical study shows that our approach can improve the generalization ability of a fault-free RBF network.

摘要

在针对节点开路故障的经典训练方法中,我们需要考虑许多潜在的故障网络。当考虑多节点故障情况时,潜在故障网络的空间非常大。因此,目标函数和相应的学习算法在计算上会很复杂。本文使用库尔贝克-莱布勒散度来定义一个目标函数,以提高径向基函数(RBF)网络的容错能力。假设输出数据中存在高斯分布的噪声项,确定了目标函数中的一个正则化项。最后,开发了相应的学习算法。在我们的方法中,目标函数和学习算法在计算上很简单。与一些传统方法(包括基于权重衰减的正则化项)相比,我们的方法具有更好的容错能力。此外,我们的实证研究表明,我们的方法可以提高无故障RBF网络的泛化能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验