Lopez-Atalaya Jose P, Roussel Benoit D, Levrat Denis, Parcq Jérôme, Nicole Olivier, Hommet Yannick, Benchenane Karim, Castel Hervé, Leprince Jérôme, To Van Denis, Bureau Ronan, Rault Sylvain, Vaudry Hubert, Petersen Karl-Uwe, Santos Jana Sopkova-de Oliveira, Ali Carine, Vivien Denis
INSERM, INSERM U919 'serine proteases and pathophysiology of the neurovascular unit', GIP Cyceron, Caen Cedex, France.
J Cereb Blood Flow Metab. 2008 Jun;28(6):1212-21. doi: 10.1038/jcbfm.2008.14. Epub 2008 Mar 12.
Current thrombolytic therapy for acute ischemic stroke with tissue-type plasminogen activator (tPA) has clear global benefits. Nevertheless, evidences argue that in addition to its prohemorrhagic effect, tPA might enhance excitotoxic necrosis. In the brain parenchyma, tPA, by binding to and then cleaving the amino-terminal domain (ATD) of the NR1 subunit of N-methyl-D-aspartate (NMDA) glutamate receptors, increases calcium influx to toxic levels. We show here that tPA binds the ATD of the NR1 subunit by a two-sites system (K(D)=24 nmol/L). Although tenecteplase (TNK) and reteplase also display two-sites binding profiles, the catalytically inactive mutant TNKS478A displays a one-site binding profile and desmoteplase (DSPA), a kringle 2 (K2) domain-free plasminogen activator derived from vampire bat, does not interact with NR1. Moreover, we show that in contrast to tPA, DSPA does not promote excitotoxicity. These findings, together with three-dimensional (3D) modeling, show that a critical step for interaction of tPA with NR1 is the binding of its K2 domain, followed by the binding of its catalytic domain, which in turn cleaves the NR1 subunit at its ATD, leading to a subsequent potentiation of NMDA-induced calcium influx and neurotoxicity. This could help design safer new generation thrombolytic agents for stroke treatment.
目前使用组织型纤溶酶原激活剂(tPA)对急性缺血性中风进行溶栓治疗具有明显的整体益处。然而,有证据表明,tPA除了具有促出血作用外,还可能增强兴奋性毒性坏死。在脑实质中,tPA通过与N-甲基-D-天冬氨酸(NMDA)谷氨酸受体NR1亚基的氨基末端结构域(ATD)结合并随后裂解该结构域,使钙内流增加至毒性水平。我们在此表明,tPA通过双位点系统(K(D)=24 nmol/L)与NR1亚基的ATD结合。尽管替奈普酶(TNK)和瑞替普酶也显示出双位点结合模式,但催化失活的突变体TNKS478A显示出单位点结合模式,而去氨普酶(DSPA),一种源自吸血蝙蝠的无kringle 2(K2)结构域的纤溶酶原激活剂,不与NR1相互作用。此外,我们表明,与tPA相反,DSPA不会促进兴奋性毒性。这些发现与三维(3D)建模一起表明,tPA与NR1相互作用的关键步骤是其K2结构域的结合,随后是其催化结构域的结合,这反过来又在NR1亚基的ATD处裂解该亚基,导致随后NMDA诱导的钙内流和神经毒性增强。这有助于设计更安全的新一代中风治疗溶栓剂。