Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France.
Op2Lysis SAS, GIP Cyceron, Boulevard H Becquerel, 14000, Caen, France.
Transl Stroke Res. 2022 Dec;13(6):1005-1016. doi: 10.1007/s12975-022-01004-9. Epub 2022 Mar 21.
Intracranial aneurysms (IAs) are pathological dilatations affecting cerebral arteries, and their ruptures lead to devasting intracranial hemorrhages. Although the mechanisms underlying the IA formation and rupture are still unclear, some factors have been identified as critical in the control of the vascular remodeling pathways associated with aneurysms. In a preclinical model, we have previously proposed the implication of the vascular serine protease, the tissue-type plasminogen activator (tPA), as one of the key players in this pathology. Here, we provide insights into the mechanism by which tPA is implicated in the formation and rupture of aneurysms. This was addressed using a murine model of IAs combined with (i) hydrodynamic transfections of various tPA mutants based on the potential implications of the different tPA domains in this pathophysiology and (ii) a pharmacological approach using a monoclonal antibody targeting tPA-dependent NMDA receptor (NMDAR) signaling and in vivo magnetic resonance brain imaging (MRI). Our results show that the endovascular tPA-NMDAR axis is implicated in IA formation and possibly their rupture. Accordingly, the use of a monoclonal antibody designed to block tPA-dependent endothelial NMDAR signaling (Glunomab®) decreases the rate of intracranial aneurysm formation and their rupture. The present study gives new insights into the IA pathophysiology by demonstrating the implication of the tPA-dependent endothelial NMDAR signaling. In addition, the present data proposes that a monoclonal antibody injected intravenously to target this process, i.e., Glunomab® could be a useful therapeutic candidate for this devastating disease.
颅内动脉瘤 (IA) 是影响脑动脉的病理性扩张,其破裂会导致毁灭性的颅内出血。虽然 IA 形成和破裂的机制尚不清楚,但已经确定了一些因素在控制与动脉瘤相关的血管重塑途径方面起着关键作用。在临床前模型中,我们之前提出了血管丝氨酸蛋白酶组织型纤溶酶原激活物 (tPA) 的作用,认为其是该病理学的关键因素之一。在这里,我们深入研究了 tPA 如何参与动脉瘤的形成和破裂。这项研究是通过使用 IA 的小鼠模型结合以下方法来解决的:(i) 基于不同 tPA 结构域在该病理生理学中的潜在影响,对各种 tPA 突变体进行流体动力学转染;(ii) 使用针对 tPA 依赖性 NMDA 受体 (NMDAR) 信号的单克隆抗体进行药理学方法,并进行体内磁共振脑成像 (MRI)。我们的结果表明,血管内 tPA-NMDAR 轴与 IA 的形成及其破裂有关。因此,使用设计用于阻断 tPA 依赖性内皮 NMDAR 信号的单克隆抗体(Glunomab®)可降低颅内动脉瘤形成及其破裂的速度。本研究通过证明 tPA 依赖性内皮 NMDAR 信号的作用,为 IA 病理生理学提供了新的见解。此外,本研究数据表明,静脉注射针对该过程的单克隆抗体,即 Glunomab®,可能是这种毁灭性疾病的有用治疗候选药物。