Windhorst U, Kokkoroyiannis T
Zentrum Physiologie und Pathophysiologie der Universität Göttingen, F.R.G.
Neuroscience. 1991;43(1):249-59. doi: 10.1016/0306-4522(91)90432-n.
Mammalian skeletal motor units have differing properties including their different susceptibility to fatigue. The question discussed in this paper is whether and to what extent proprioceptive feedback via muscle spindles can contribute to shape the firing patterns of motor units so as to minimize their loss of force during fatiguing contraction. The firing of a skeleto-motoneuron dispatches signals which are fed back to the same and homonymous as well as synergistic motoneuron. Two feedback pathways are of concern here: one via the related muscle unit and muscle spindle afferents (proprioceptive path), and one via recurrent motor axon collaterals and Renshaw cells (recurrent inhibitory path). It is suggested that the contraction of a motor unit or a small group of adjacent ones is signalled to the homonymous alpha-motoneurons via proprioceptive afferents, the signal being filtered and enhanced by spinal recurrent inhibition. This is effected by timed correlation of the signals which are propagated through the two feedback loops. The effects of the correlation can be strengthened by (i) topographical order of the feedback connections, (ii) heterosynaptic interaction, and (iii) tendencies towards synchronous discharge between motoneurons. These mechanisms render the possibility more likely that information about the unfused contractions of a muscle unit (or a small group of them), mediated via proprioceptive afferents, play a role in shaping the precise discharge pattern of the innervating motoneuron(s). These mechanisms could be used to optimize the force output of large fatiguing motor units during long activation, during which their activation rates normally decrease (adapt) over time. Our results show that during adapting motoneuron firing Renshaw cells and muscle spindle afferents may show discharge patterns which at least in part are in keeping with such an hypothesis.
哺乳动物的骨骼肌运动单位具有不同的特性,包括它们对疲劳的不同易感性。本文讨论的问题是,通过肌梭的本体感受反馈是否以及在多大程度上能够影响运动单位的放电模式,从而在疲劳收缩过程中尽量减少其力量损失。骨骼肌运动神经元的放电会发出信号,这些信号会反馈到相同的、同名的以及协同的运动神经元。这里涉及两条反馈通路:一条通过相关的肌肉单位和肌梭传入纤维(本体感受通路),另一条通过回返性运动轴突侧支和闰绍细胞(回返性抑制通路)。有人提出,一个运动单位或一小群相邻运动单位的收缩会通过本体感受传入纤维向同名的α运动神经元发出信号,该信号会被脊髓回返性抑制进行过滤和增强。这是通过两条反馈回路中传播的信号的定时相关性来实现的。相关性的影响可以通过以下方式得到加强:(i)反馈连接的拓扑顺序,(ii)异突触相互作用,以及(iii)运动神经元之间同步放电的趋势。这些机制使得经由本体感受传入纤维介导的关于肌肉单位(或一小群肌肉单位)未融合收缩的信息更有可能在塑造支配运动神经元的精确放电模式中发挥作用。这些机制可用于在长时间激活期间优化大型疲劳运动单位的力量输出,在此期间它们的激活率通常会随着时间而降低(适应)。我们的结果表明,在适应性运动神经元放电过程中,闰绍细胞和肌梭传入纤维可能会表现出至少部分符合这种假设的放电模式。