Windhorst U, Kokkoroyiannis T, Laouris Y, Meyer-Lohmann J
Universität Göttingen, Abteilung Neuro- und Sinnesphysiologie, Federal Republic of Germany.
Neuroscience. 1994 Mar;59(1):149-63. doi: 10.1016/0306-4522(94)90106-6.
Spinal recurrent inhibition via Renshaw cells and proprioceptive feedback via skeletal muscle and muscle spindle afferents have been hypothesized to constitute a compound feedback system [Windhorst (1989) Afferent Control of Posture and Locomotion; Windhorst (1993) Robots and Biological Systems--Towards a New Bionics]. To assess their detailed functions, it is necessary to know their dynamic characteristics. Previously we have extensively described the properties of signal transmission from motor axons to Renshaw cells using random motor axon stimulation and data analysis methods based thereupon. Using the same methods, we here compare these properties, in the cat, with those between motor axons and group Ia muscle spindle afferents in terms of frequency responses and nonlinear features. The frequency responses depend on the mean rate (carrier rate) of activation of motor axons and on the strength of coupling between motor units and spindles. In general, they are those of a second-order low-pass system with a cut-off at fairly low frequencies. This contrasts with the dynamics of motor axon-Renshaw cell couplings which are those of a much broader band-pass with its peak in the range of c. 2-15 Hz [Christakos (1987) Neuroscience 23, 613-623]. The second-order non-linearities in motor unit-muscle spindle signal lines are much more diverse than those in motor axon-Renshaw cell couplings. Although the average strength of response declines with mean stimulus rate in both subsystems, there is no systematic relationship between the amount of non-linearity and the average response in the former, whilst there is in the latter. The qualitative appearance of motor unit-muscle spindle non-linearities was complicated as was the average response to motor unit twitches. Thus, whilst Renshaw cells appear to dynamically reflect motor output rather faithfully, muscle spindles seem to signal local muscle fibre length changes and their dynamics. This would be consistent with the hypothesis that the two feedback pathways monitor different state variables determining the production of muscle force: neural input and length and its changes. Specifically, the dynamic properties of both subsystems may combine favourably to decrease the risk of instability (tremor) in the motoneuron-muscle spindle loop.
通过闰绍细胞的脊髓回返抑制以及通过骨骼肌和肌梭传入纤维的本体感受反馈,被假定构成一个复合反馈系统[温德霍斯特(1989年)《姿势与运动的传入控制》;温德霍斯特(1993年)《机器人与生物系统——迈向新的仿生学》]。为了评估它们的详细功能,有必要了解它们的动态特性。此前我们已广泛描述了使用随机运动轴突刺激及基于此的数据分析方法,从运动轴突到闰绍细胞的信号传递特性。在此,我们使用相同方法,就频率响应和非线性特征方面,将猫的运动轴突与Ia类肌梭传入纤维之间的这些特性,与运动轴突和闰绍细胞之间的特性进行比较。频率响应取决于运动轴突激活的平均速率(载波速率)以及运动单位与肌梭之间的耦合强度。一般来说,它们是二阶低通系统的频率响应,截止频率相当低。这与运动轴突 - 闰绍细胞耦合的动态特性形成对比,后者是一个带宽更宽的带通系统,其峰值在约2 - 15赫兹范围内[克里斯塔科斯(1987年)《神经科学》23卷,613 - 623页]。运动单位 - 肌梭信号线中的二阶非线性比运动轴突 - 闰绍细胞耦合中的更加多样。尽管在两个子系统中,平均反应强度都随平均刺激速率下降,但在前者中,非线性程度与平均反应之间没有系统的关系,而在后者中有。运动单位 - 肌梭非线性的定性表现很复杂,对运动单位抽搐的平均反应也是如此。因此,虽然闰绍细胞似乎能相当忠实地动态反映运动输出,但肌梭似乎在信号传递局部肌纤维长度变化及其动态特性。这与以下假设一致,即这两条反馈通路监测决定肌肉力量产生的不同状态变量:神经输入以及长度及其变化。具体而言,两个子系统的动态特性可能会有利地结合起来,以降低运动神经元 - 肌梭环路中不稳定(震颤)的风险。