Jin Emma Y, Reidys Christian M
Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin, 300071, People's Republic of China.
Bull Math Biol. 2008 May;70(4):951-70. doi: 10.1007/s11538-007-9265-2. Epub 2008 Mar 14.
In this paper, we present the asymptotic enumeration of RNA structures with pseudoknots. We develop a general framework for the computation of exponential growth rate and the asymptotic expansion for the numbers of k-noncrossing RNA structures. Our results are based on the generating function for the number of k-noncrossing RNA pseudoknot structures, Sk(n), derived in Bull. Math. Biol. (2008), where k-1 denotes the maximal size of sets of mutually intersecting bonds. We prove a functional equation for the generating function Sigman>or=0 Sk(n)zn and obtain for k=2 and k=3, the analytic continuation and singular expansions, respectively. It is implicit in our results that for arbitrary k singular expansions exist and via transfer theorems of analytic combinatorics, we obtain asymptotic expression for the coefficients. We explicitly derive the asymptotic expressions for 2- and 3-noncrossing RNA structures. Our main result is the derivation of the formula S3(n) approximately 10.4724.4!/n(n-1)...(n-4)(5+[sqrt]21/2)n.
在本文中,我们给出了带有假结的RNA结构的渐近计数。我们开发了一个用于计算指数增长率以及k - 非交叉RNA结构数量的渐近展开式的通用框架。我们的结果基于《数学生物学公报》(2008年)中推导得出的k - 非交叉RNA假结结构数量(S_k(n))的生成函数,其中(k - 1)表示相互交叉键集合的最大规模。我们证明了生成函数(\sum_{n\geq0} S_k(n)z^n)的一个函数方程,并分别针对(k = 2)和(k = 3)得到了解析延拓和奇异展开式。我们的结果隐含着对于任意(k)都存在奇异展开式,并且通过解析组合学的转移定理,我们得到了系数的渐近表达式。我们明确推导了2 - 和3 - 非交叉RNA结构的渐近表达式。我们的主要结果是推导出公式(S_3(n)\approx10.4724\cdot\frac{4!}{n(n - 1)\cdots(n - 4)}\left(\frac{5 + \sqrt{21}}{2}\right)^n)。