Suppr超能文献

含假结的RNA结构的渐近计数

Asymptotic enumeration of RNA structures with pseudoknots.

作者信息

Jin Emma Y, Reidys Christian M

机构信息

Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin, 300071, People's Republic of China.

出版信息

Bull Math Biol. 2008 May;70(4):951-70. doi: 10.1007/s11538-007-9265-2. Epub 2008 Mar 14.

Abstract

In this paper, we present the asymptotic enumeration of RNA structures with pseudoknots. We develop a general framework for the computation of exponential growth rate and the asymptotic expansion for the numbers of k-noncrossing RNA structures. Our results are based on the generating function for the number of k-noncrossing RNA pseudoknot structures, Sk(n), derived in Bull. Math. Biol. (2008), where k-1 denotes the maximal size of sets of mutually intersecting bonds. We prove a functional equation for the generating function Sigman>or=0 Sk(n)zn and obtain for k=2 and k=3, the analytic continuation and singular expansions, respectively. It is implicit in our results that for arbitrary k singular expansions exist and via transfer theorems of analytic combinatorics, we obtain asymptotic expression for the coefficients. We explicitly derive the asymptotic expressions for 2- and 3-noncrossing RNA structures. Our main result is the derivation of the formula S3(n) approximately 10.4724.4!/n(n-1)...(n-4)(5+[sqrt]21/2)n.

摘要

在本文中,我们给出了带有假结的RNA结构的渐近计数。我们开发了一个用于计算指数增长率以及k - 非交叉RNA结构数量的渐近展开式的通用框架。我们的结果基于《数学生物学公报》(2008年)中推导得出的k - 非交叉RNA假结结构数量(S_k(n))的生成函数,其中(k - 1)表示相互交叉键集合的最大规模。我们证明了生成函数(\sum_{n\geq0} S_k(n)z^n)的一个函数方程,并分别针对(k = 2)和(k = 3)得到了解析延拓和奇异展开式。我们的结果隐含着对于任意(k)都存在奇异展开式,并且通过解析组合学的转移定理,我们得到了系数的渐近表达式。我们明确推导了2 - 和3 - 非交叉RNA结构的渐近表达式。我们的主要结果是推导出公式(S_3(n)\approx10.4724\cdot\frac{4!}{n(n - 1)\cdots(n - 4)}\left(\frac{5 + \sqrt{21}}{2}\right)^n)。

相似文献

1
Asymptotic enumeration of RNA structures with pseudoknots.
Bull Math Biol. 2008 May;70(4):951-70. doi: 10.1007/s11538-007-9265-2. Epub 2008 Mar 14.
2
Combinatorics of RNA structures with pseudoknots.
Bull Math Biol. 2008 Jan;70(1):45-67. doi: 10.1007/s11538-007-9240-y. Epub 2007 Sep 26.
3
Statistics of canonical RNA pseudoknot structures.
J Theor Biol. 2008 Aug 7;253(3):570-8. doi: 10.1016/j.jtbi.2008.04.002. Epub 2008 Apr 11.
4
Central and local limit theorems for RNA structures.
J Theor Biol. 2008 Feb 7;250(3):547-59. doi: 10.1016/j.jtbi.2007.09.020. Epub 2007 Sep 22.
5
Pseudoknot RNA structures with arc-length > or =4.
J Comput Biol. 2008 Nov;15(9):1195-208. doi: 10.1089/cmb.2008.0051.
6
Shapes of RNA pseudoknot structures.
J Comput Biol. 2010 Nov;17(11):1575-90. doi: 10.1089/cmb.2010.0006. Epub 2010 Sep 24.
7
Canonical RNA pseudoknot structures.
J Comput Biol. 2008 Dec;15(10):1257-73. doi: 10.1089/cmb.2008.0121.
8
Stacks in canonical RNA pseudoknot structures.
Math Biosci. 2009 May;219(1):7-14. doi: 10.1016/j.mbs.2008.12.011.
9
Loops in canonical RNA pseudoknot structures.
J Comput Biol. 2011 Dec;18(12):1793-806. doi: 10.1089/cmb.2010.0022. Epub 2011 Mar 19.
10
Irreducibility in RNA structures.
Bull Math Biol. 2010 Feb;72(2):375-99. doi: 10.1007/s11538-009-9451-5. Epub 2009 Nov 5.

引用本文的文献

1
Sequence-structure relations of pseudoknot RNA.
BMC Bioinformatics. 2009 Jan 30;10 Suppl 1(Suppl 1):S39. doi: 10.1186/1471-2105-10-S1-S39.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验