Huang Fenix W D, Reidys Christian M
Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, PR China.
J Theor Biol. 2008 Aug 7;253(3):570-8. doi: 10.1016/j.jtbi.2008.04.002. Epub 2008 Apr 11.
In this paper we study canonical RNA pseudoknot structures. We prove central limit theorems for the distributions of the arc-numbers of k-noncrossing RNA structures with given minimum stack-size tau over n nucleotides. Furthermore we compare the space of all canonical structures with canonical minimum free energy pseudoknot structures. Our results generalize the analysis of Schuster et al. obtained for RNA secondary structures [Hofacker, I.L., Schuster, P., Stadler, P.F., 1998. Combinatorics of RNA secondary structures. Discrete Appl. Math. 88, 207-237; Jin, E.Y., Reidys, C.M., 2007b. Central and local limit theorems for RNA structures. J. Theor. Biol. 250 (2008), 547-559; 2007a. Asymptotic enumeration of RNA structures with pseudoknots. Bull. Math. Biol., 70 (4), 951-970] to k-noncrossing RNA structures. Here k2 and tau are arbitrary natural numbers. We compare canonical pseudoknot structures to arbitrary structures and show that canonical pseudoknot structures exhibit significantly smaller exponential growth rates. We then compute the asymptotic distribution of their arc-numbers. Finally, we analyze how the minimum stack-size and crossing number factor into the distributions.
在本文中,我们研究了典型的RNA假结结构。我们证明了在n个核苷酸上具有给定最小堆叠大小τ的k - 非交叉RNA结构的弧数分布的中心极限定理。此外,我们将所有典型结构的空间与典型最小自由能假结结构进行了比较。我们的结果将Schuster等人对RNA二级结构的分析[Hofacker, I.L., Schuster, P., Stadler, P.F., 1998. RNA二级结构的组合学。离散应用数学。88, 207 - 237; Jin, E.Y., Reidys, C.M., 2007b. RNA结构的中心极限定理和局部极限定理。理论生物学杂志。250 (2008), 547 - 559; 2007a. 具有假结的RNA结构的渐近枚举。数学生物学通报。70 (4), 951 - 970]推广到了k - 非交叉RNA结构。这里k≥2且τ是任意自然数。我们将典型假结结构与任意结构进行了比较,并表明典型假结结构呈现出显著更小的指数增长率。然后我们计算了它们弧数的渐近分布。最后,我们分析了最小堆叠大小和交叉数如何影响这些分布。