Suppr超能文献

用于乙烷痕量分析的红外腔泄漏光谱法与气相色谱 - 火焰离子化法的比对

Intercomparison of infrared cavity leak-out spectroscopy and gas chromatography-flame ionization for trace analysis of ethane.

作者信息

Thelen Sven, Miekisch Wolfram, Halmer Daniel, Schubert Jochen, Hering Peter, Mürtz Manfred

机构信息

Institut für Lasermedizin, Universität Düsseldorf, Universitätstrasse 1, 40225 Düsseldorf, Germany.

出版信息

Anal Chem. 2008 Apr 15;80(8):2768-73. doi: 10.1021/ac702282q. Epub 2008 Mar 15.

Abstract

Comparison of two different methods for the measurement of ethane at the parts-per-billion (ppb) level is reported. We used cavity leak-out spectroscopy (CALOS) in the 3 microm wavelength region and gas chromatography-flame ionization detection (GC-FID) for the analysis of various gas samples containing ethane fractions in synthetic air. Intraday and interday reproducibilities were studied. Intercomparing the results of two series involving seven samples with ethane mixing ratios ranging from 0.5 to 100 ppb, we found a reasonable agreement between both methods. The scatter plot of GC-FID data versus CALOS data yields a linear regression slope of 1.07 +/- 0.03. Furthermore, some of the ethane mixtures were checked over the course of 1 year, which proved the long-term stability of the ethane mixing ratio. We conclude that CALOS shows equivalent ethane analysis precision compared to GC-FID, with the significant advantage of a much higher time resolution (<1 s) since there is no requirement for sample preconcentration. This opens new analytical possibilities, e.g., for real-time monitoring of ethane traces in exhaled human breath.

摘要

报道了两种用于测量十亿分之一(ppb)级乙烷的不同方法的比较。我们在3微米波长区域使用腔泄漏光谱法(CALOS)以及气相色谱 - 火焰离子化检测法(GC - FID)来分析合成空气中含有乙烷馏分的各种气体样品。研究了日内和日间重现性。通过比较两个系列(涉及七个乙烷混合比范围为0.5至100 ppb的样品)的结果,我们发现两种方法之间具有合理的一致性。GC - FID数据与CALOS数据的散点图得出线性回归斜率为1.07±0.03。此外,对一些乙烷混合物进行了为期1年的检查,这证明了乙烷混合比的长期稳定性。我们得出结论,与GC - FID相比,CALOS显示出相当的乙烷分析精度,其显著优势在于时间分辨率高得多(<1秒),因为无需对样品进行预浓缩。这为新的分析可能性开辟了道路,例如用于实时监测呼出的人体呼吸中的乙烷痕量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验