Arikketh Devi, Nelson Randy, Vance Jean E
University of Alberta, Edmonton, Alberta T6G 2S2, Canada.
J Biol Chem. 2008 May 9;283(19):12888-97. doi: 10.1074/jbc.M800714200. Epub 2008 Mar 14.
Phosphatidylserine (PS) is a quantitatively minor, but physiologically important, phospholipid in mammalian cells. PS is synthesized by two distinct base-exchange enzymes, PS synthase-1 (PSS1) and PS synthase-2 (PSS2), that are encoded by different genes. PSS1 exchanges serine for choline of phosphatidylcholine, whereas PSS2 exchanges ethanolamine of phosphatidylethanolamine for serine. We previously generated mice lacking PSS2 (Bergo, M. O., Gavino, B. J., Steenbergen, R., Sturbois, B., Parlow, A. F., Sanan, D. A., Skarnes, W. C., Vance, J. E., and Young, S. G. (2002) J. Biol. Chem. 277, 47701-47708) and found that PSS2 is not required for mouse viability. We have now generated PSS1-deficient mice. In light of the markedly impaired survival of Chinese hamster ovary cells lacking PSS1 we were surprised that PSS1-deficient mice were viable, fertile, and had a normal life span. Total serine-exchange activity (contributed by PSS1 and PSS2) in tissues of Pss1(-/-) mice was reduced by up to 85%, but except in liver, the PS content was unaltered. Despite the presumed importance of PS in the nervous system, the rate of axonal extension of PSS1-deficient neurons was normal. Intercrosses of Pss1(-/-) mice and Pss2(-/-) mice yielded mice with three disrupted Pss alleles but no double knockout mice. In Pss1(-/-)/Pss2(-/-) and Pss1(-/-)/Pss2(-/-) mice, serine-exchange activity was reduced by 65-91%, and the tissue content of PS and phosphatidylethanolamine was also decreased. We conclude that (i) elimination of either PSS1 or PSS2, but not both, is compatible with mouse viability, (ii) mice can tolerate as little as 10% of normal total serine-exchange activity, and (iii) mice survive with significantly reduced PS and phosphatidylethanolamine content.
磷脂酰丝氨酸(PS)是哺乳动物细胞中含量较少但生理功能重要的一种磷脂。PS由两种不同的碱基交换酶——PS合酶-1(PSS1)和PS合酶-2(PSS2)合成,这两种酶由不同基因编码。PSS1将丝氨酸与磷脂酰胆碱中的胆碱进行交换,而PSS2将磷脂酰乙醇胺中的乙醇胺与丝氨酸进行交换。我们之前培育出了缺乏PSS2的小鼠(Bergo,M. O.,Gavino,B. J.,Steenbergen,R.,Sturbois,B.,Parlow,A. F.,Sanan,D. A.,Skarnes,W. C.,Vance,J. E.,以及Young,S. G.(2002年)《生物化学杂志》277卷,47701 - 47708页),发现PSS2并非小鼠生存所必需。我们现在培育出了缺乏PSS1的小鼠。鉴于缺乏PSS1的中国仓鼠卵巢细胞存活率显著受损,我们惊讶地发现缺乏PSS1的小鼠能够存活、繁殖且寿命正常。Pss1(-/-)小鼠组织中的总丝氨酸交换活性(由PSS1和PSS2共同贡献)降低了多达85%,但除肝脏外,PS含量未发生改变。尽管PS在神经系统中可能具有重要作用,但缺乏PSS1的神经元轴突延伸速率正常。Pss1(-/-)小鼠与Pss2(-/-)小鼠杂交产生了具有三个Pss等位基因被破坏的小鼠,但没有双敲除小鼠。在Pss1(-/-)/Pss2(-/-)和Pss1(-/-)/Pss2(-/-)小鼠中,丝氨酸交换活性降低了65 - 91%,PS和磷脂酰乙醇胺的组织含量也有所下降。我们得出以下结论:(i)消除PSS1或PSS2其中之一而非两者,与小鼠的生存能力是相容的;(ii)小鼠能够耐受低至正常总丝氨酸交换活性10%的水平;(iii)小鼠在PS和磷脂酰乙醇胺含量显著降低的情况下仍能存活。