Foulkes Andrea S, Yucel Recai, Li Xiaohong
Division of Biostatistics, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA.
Biostatistics. 2008 Oct;9(4):635-57. doi: 10.1093/biostatistics/kxm055. Epub 2008 Mar 14.
This manuscript describes a novel, linear mixed-effects model-fitting technique for the setting in which correlated data indicators are not completely observed. Mixed modeling is a useful analytical tool for characterizing genotype-phenotype associations among multiple potentially informative genetic loci. This approach involves grouping individuals into genetic clusters, where individuals in the same cluster have similar or identical multilocus genotypes. In haplotype-based investigations of unrelated individuals, corresponding cluster assignments are unobservable since the alignment of alleles within chromosomal copies is not generally observed. We derive an expectation conditional maximization approach to estimation in the mixed modeling setting, where cluster assignments are ambiguous. The approach has broad relevance to the analysis of data with missing correlated data identifiers. An example is provided based on data arising from a cohort of human immunodeficiency virus type-1-infected individuals at risk for antiretroviral therapy-associated dyslipidemia.
本手稿描述了一种新颖的线性混合效应模型拟合技术,用于处理相关数据指标未被完全观测到的情况。混合建模是一种有用的分析工具,用于表征多个潜在信息丰富的基因座之间的基因型-表型关联。这种方法涉及将个体分组到基因簇中,同一簇中的个体具有相似或相同的多位点基因型。在基于单倍型的无关个体研究中,由于通常无法观察到染色体拷贝内等位基因的排列,相应的簇分配是不可观测的。我们推导了一种期望条件最大化方法,用于在簇分配不明确的混合建模环境中进行估计。该方法与具有缺失相关数据标识符的数据的分析具有广泛的相关性。基于来自一组有抗逆转录病毒治疗相关血脂异常风险的人类免疫缺陷病毒1型感染个体的数据提供了一个示例。