Suppr超能文献

针对具有可忽略不响应的多变量多水平连续数据的多重填补推断。

Multiple imputation inference for multivariate multilevel continuous data with ignorable non-response.

作者信息

Yucel Recai M

机构信息

Department of Epidemiology and Biostatistics, University at Albany, School of Public Health, One University Place, Room 139, Rensselaer, NY 12144, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2008 Jul 13;366(1874):2389-403. doi: 10.1098/rsta.2008.0038.

Abstract

Methods specifically targeting missing values in a wide spectrum of statistical analyses are now part of serious statistical thinking due to many advances in computational statistics and increased awareness among sophisticated consumers of statistics. Despite many advances in both theory and applied methods for missing data, missing-data methods in multilevel applications lack equal development. In this paper, I consider a popular inferential tool via multiple imputation in multilevel applications with missing values. I specifically consider missing values occurring arbitrarily at any level of observational units. I use Bayesian arguments for drawing multiple imputations from the underlying (posterior) predictive distribution of missing data. Multivariate extensions of well-known mixed-effects models form the basis for simulating the posterior predictive distribution, hence creating the multiple imputations. The discussion of these topics is demonstrated in an application assessing correlates to unmet need for mental health care among children with special health care needs.

摘要

由于计算统计学的诸多进展以及精通统计学的用户的意识增强,在广泛的统计分析中专门针对缺失值的方法如今已成为严谨统计思维的一部分。尽管在缺失数据的理论和应用方法方面都有很多进展,但多级应用中的缺失数据方法却缺乏同等的发展。在本文中,我考虑了一种在存在缺失值的多级应用中通过多重填补进行的常用推断工具。我特别考虑了在观测单位的任何层级上任意出现的缺失值。我使用贝叶斯论证从缺失数据的潜在(后验)预测分布中进行多重填补。著名的混合效应模型的多变量扩展构成了模拟后验预测分布的基础,从而创建多重填补。这些主题的讨论在一项评估有特殊医疗需求儿童未满足的心理健康护理需求相关因素的应用中得到了展示。

相似文献

1
Multiple imputation inference for multivariate multilevel continuous data with ignorable non-response.
Philos Trans A Math Phys Eng Sci. 2008 Jul 13;366(1874):2389-403. doi: 10.1098/rsta.2008.0038.
2
A comparison of multiple imputation methods for missing data in longitudinal studies.
BMC Med Res Methodol. 2018 Dec 12;18(1):168. doi: 10.1186/s12874-018-0615-6.
3
A multiple imputation strategy for incomplete longitudinal data.
Stat Med. 2001;20(17-18):2741-60. doi: 10.1002/sim.740.
4
Streamlined mean field variational Bayes for longitudinal and multilevel data analysis.
Biom J. 2016 Jul;58(4):868-95. doi: 10.1002/bimj.201500007. Epub 2016 May 23.
5
Imputation and variable selection in linear regression models with missing covariates.
Biometrics. 2005 Jun;61(2):498-506. doi: 10.1111/j.1541-0420.2005.00317.x.
6
Multiple imputation for missing data via sequential regression trees.
Am J Epidemiol. 2010 Nov 1;172(9):1070-6. doi: 10.1093/aje/kwq260. Epub 2010 Sep 14.
7
A simple imputation method for longitudinal studies with non-ignorable non-responses.
Biom J. 2006 Apr;48(2):302-18. doi: 10.1002/bimj.200510188.
8
Multiple imputation and posterior simulation for multivariate missing data in longitudinal studies.
Biometrics. 2000 Dec;56(4):1157-63. doi: 10.1111/j.0006-341x.2000.01157.x.
9
Infinite hidden Markov models for multiple multivariate time series with missing data.
Biometrics. 2023 Sep;79(3):2592-2604. doi: 10.1111/biom.13715. Epub 2022 Jul 22.
10
A Bayesian multiple imputation approach to bivariate functional data with missing components.
Stat Med. 2021 Sep 30;40(22):4772-4793. doi: 10.1002/sim.9093. Epub 2021 Jun 8.

引用本文的文献

2
Joint Imputation of General Data.
J Surv Stat Methodol. 2023 Sep 12;12(1):183-210. doi: 10.1093/jssam/smad034. eCollection 2024 Feb.
4
Development and validation of a cardiovascular diseases risk prediction model for Chinese males (CVDMCM).
Front Cardiovasc Med. 2022 Nov 18;9:967097. doi: 10.3389/fcvm.2022.967097. eCollection 2022.
5
Review and evaluation of imputation methods for multivariate longitudinal data with mixed-type incomplete variables.
Stat Med. 2022 Dec 30;41(30):5844-5876. doi: 10.1002/sim.9592. Epub 2022 Oct 11.
6
Imputation of missing values for electronic health record laboratory data.
NPJ Digit Med. 2021 Oct 11;4(1):147. doi: 10.1038/s41746-021-00518-0.
7
Evaluation of approaches for multiple imputation of three-level data.
BMC Med Res Methodol. 2020 Aug 12;20(1):207. doi: 10.1186/s12874-020-01079-8.
8
Bayesian Multilevel Latent Class Models for the Multiple Imputation of Nested Categorical Data.
J Educ Behav Stat. 2018 Oct;43(5):511-539. doi: 10.3102/1076998618769871. Epub 2018 Apr 30.
9
A comparison of existing methods for multiple imputation in individual participant data meta-analysis.
Stat Med. 2017 Sep 30;36(22):3507-3532. doi: 10.1002/sim.7388. Epub 2017 Jul 10.
10
Covariate Selection for Multilevel Models with Missing Data.
Stat (Int Stat Inst). 2017;6(1):31-46. doi: 10.1002/sta4.133. Epub 2017 Jan 8.

本文引用的文献

1
A likelihood-based approach to mixed modeling with ambiguity in cluster identifiers.
Biostatistics. 2008 Oct;9(4):635-57. doi: 10.1093/biostatistics/kxm055. Epub 2008 Mar 14.
2
Multiple imputation: review of theory, implementation and software.
Stat Med. 2007 Jul 20;26(16):3057-77. doi: 10.1002/sim.2787.
6
7
Multiple imputation and posterior simulation for multivariate missing data in longitudinal studies.
Biometrics. 2000 Dec;56(4):1157-63. doi: 10.1111/j.0006-341x.2000.01157.x.
8
Random-effects models for longitudinal data.
Biometrics. 1982 Dec;38(4):963-74.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验