Microbial Biophysics and Residue Chemistry, Eastern Regional Research Center, United States Department of Agriculture, 600 E. Mermaid Lane, Wynmoor, PA 19038, USA.
Anal Bioanal Chem. 2008 May;391(2):515-24. doi: 10.1007/s00216-008-1961-8. Epub 2008 Mar 16.
For most applications, 3-5 observations, or samplings (n), are utilized to estimate total aerobic plate count in an average population (μ) that is greater than about 50 cells, or colony forming units (CFU), per sampled volume. We have chosen to utilize a 6 × 6 drop plate method for bacterial colony selection because it offers the means to rapidly perform all requisite dilutions in a 96-well format and plate these dilutions on solid media using minimal materials. Besides traditional quantitative purposes, we also need to select colonies which are well-separated from each other for the purpose of bacterial identification. To achieve this goal using the drop plate format requires the utilization of very dilute solutions (μ < 10 CFUs per sampled drop). At such low CFU densities the sampling error becomes problematic. To address this issue we produced both observed and computer-generated colony count data and divided a large sample of individual counts randomly into N subsamples each with n = 2-24 observations (N × n = 360). From these data we calculated the average total mean-normalized (x⁻(tot), n = 360) deviation of the total standard deviation (s (tot)) from each jth subsample's estimate (s ( j )), which we call Δ. When either observed or computer-generated Δ values were analyzed as a function of x⁻(tot), a set of relationships (∞ ₋₂√ ⁻x(tot)) were generated which appeared to converge at an n of about 18 observations. This finding was verified analytically at even lower CFU concentrations (⁻x(tot) ≈ 1 − 10 CFUs per observation). Additional experiments using the drop plate format and n = 18 samplings were performed on food samples along with most probable number (MPN) analyses and it was found that the two enumeration methods did not differ significantly.
对于大多数应用,通常采用 3-5 个观察值或采样(n)来估计大于约 50 个细胞或菌落形成单位(CFU)/采样体积的平均群体(μ)中的总需氧平板计数。我们选择使用 6×6 滴板法进行细菌菌落选择,因为它提供了一种快速在 96 孔格式中进行所有必需稀释的方法,并使用最少的材料将这些稀释液平板接种在固体培养基上。除了传统的定量目的外,我们还需要选择彼此之间分离良好的菌落,以便进行细菌鉴定。为了使用滴板格式实现这一目标,需要使用非常稀释的溶液(每个采样滴的 μ<10 CFU)。在如此低的 CFU 密度下,采样误差成为问题。为了解决这个问题,我们制作了观察到的和计算机生成的菌落计数数据,并将大量的个体计数随机分成 N 个子样本,每个子样本的 n=2-24 个观察值(N×n=360)。从这些数据中,我们计算了总标准偏差(s(tot))的总均值归一化(x⁻(tot),n=360)偏差的平均值,我们称之为Δ。当观察到的或计算机生成的Δ值作为 x⁻(tot)的函数进行分析时,生成了一组关系(∞₋₂√ ⁻x(tot)),这些关系似乎在 n 约为 18 个观察值时收敛。在更低的 CFU 浓度(⁻x(tot)≈1-10 CFU/观察值)下,通过分析进行了验证。在食品样本上,还使用了滴板格式和 n=18 个采样进行了更多的实验,以及最可能数(MPN)分析,发现两种计数方法没有显著差异。