Suppr超能文献

Hormonal and circulatory responses to chronically controlled increments in right atrial pressure.

作者信息

Shin Y, Lohmeier T E, Hester R L, Kivlighn S D, Smith M J

机构信息

Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson 39216-4505.

出版信息

Am J Physiol. 1991 Nov;261(5 Pt 2):R1176-87. doi: 10.1152/ajpregu.1991.261.5.R1176.

Abstract

To study the time-dependent changes in the secretion of atrial natriuretic peptide (ANP) in response to chronic stimulation by controlled increments in atrial pressure, we developed methodology for precise control of right atrial pressure (RAP) in dogs by employing an externally adjustable occluder around the pulmonary artery and a servo-control system. During 7 days of servo-control of RAP at 6.3 +/- 0.1 mmHg above control levels (1.3 +/- 0.1 mmHg), the 24-h coefficient of variation in RAP was 1/45 the variation that occurred under control conditions. After 30 min of increased RAP, mean arterial pressure (MAP) was reduced from 101 +/- 4 to 84 +/- 3 mmHg in association with increments in plasma renin activity (PRA) from 0.6 +/- 0.1 to 2.5 +/- 0.9 ng angiotensin I (ANG I).ml-1.h-1 and in the plasma concentrations of ANP, arginine vasopressin (AVP), and epinephrine from 93 +/- 18 to 484 +/- 61 pg/ml, from 0.5 +/- 0.1 to 9.2 +/- 2.4 pg/ml, and from 82 +/- 27 to 585 +/- 133 pg/ml, respectively. In comparison, on day 7 of servo-control of RAP, sodium balance was achieved and MAP remained depressed (82 +/- 4 mmHg) along with sustained increments in both plasma ANP concentration (482 +/- 67 pg/ml) and PRA (1.7 +/- 0.6 ng ANG I.ml-1.h-1); on the other hand, the plasma concentrations of AVP and epinephrine returned to control levels. This quantitative study indicates that ANP secretion does not chronically adapt to stimulation by increased atrial pressure and suggests that the plasma levels of ANP achieved in heart failure markedly increase renal excretory capability and allow fluid balance to be achieved at a substantial fall in renal perfusion pressure.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验