Suppr超能文献

级联线性移位不变处理的统计性能

Statistical performance of cascaded linear shift-invariant processing.

作者信息

Reed S, Coupland J

出版信息

Appl Opt. 2000 Nov 10;39(32):5949-55. doi: 10.1364/ao.39.005949.

Abstract

The cascaded correlator architecture comprises a series of traditional linear correlators separated by nonlinear threshold functions, trained with neural-network techniques. We investigate the shift-invariant classification performance of cascaded correlators in comparison with optimum Bayes classifiers. Inputs are formulated as randomly generated sample members of known statistical class distributions. It is shown that when the separability of true and false classes is varied in both the first and the second orders, the two-stage cascaded correlator shows performance similar to that of the optimum quadratic Bayes classifier throughout the studied range. It is shown that this is due to the similar decision boundaries implemented by the two nonlinear classifiers.

摘要

级联相关器架构由一系列由非线性阈值函数分隔的传统线性相关器组成,并采用神经网络技术进行训练。我们将级联相关器的平移不变分类性能与最优贝叶斯分类器进行比较。输入被表述为已知统计类分布的随机生成样本成员。结果表明,当真假类的可分性在一阶和二阶都发生变化时,在整个研究范围内,两级级联相关器的性能与最优二次贝叶斯分类器相似。结果表明,这是由于两个非线性分类器实现了相似的决策边界。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验