Suppr超能文献

一种用于多群落相似性指数的两阶段概率方法。

A two-stage probabilistic approach to multiple-community similarity indices.

作者信息

Chao Anne, Jost Lou, Chiang S C, Jiang Y-H, Chazdon Robin L

机构信息

Institute of Statistics, National Tsing Hua University, Hsin-Chu, Taiwan.

出版信息

Biometrics. 2008 Dec;64(4):1178-86. doi: 10.1111/j.1541-0420.2008.01010.x. Epub 2008 Mar 19.

Abstract

A traditional approach for assessing similarity among N (N > 2) communities is to use multiple pairwise comparisons. However, pairwise similarity indices do not completely characterize multiple-community similarity because the information shared by at least three communities is ignored. We propose a new and intuitive two-stage probabilistic approach, which leads to a general framework to simultaneously compare multiple communities based on abundance data. The approach is specifically used to extend the commonly used Morisita index and NESS (normalized expected species shared) index to the case of N communities. For comparing N communities, a profile of N- 1 indices is proposed to characterize similarity of species composition across communities. Based on sample abundance data, nearly unbiased estimators of the proposed indices and their variances are obtained. These generalized NESS and Morisita indices are applied to comparison of three size classes of plant data (seedling, saplings, and trees) within old-growth and secondary rain forest plots in Costa Rica.

摘要

评估N个(N>2)群落间相似性的传统方法是使用多个成对比较。然而,成对相似性指数并不能完全表征多个群落的相似性,因为至少三个群落共享的信息被忽略了。我们提出了一种全新且直观的两阶段概率方法,该方法引出了一个基于丰度数据同时比较多个群落的通用框架。此方法专门用于将常用的莫利西塔指数和NESS(归一化期望物种共享)指数扩展到N个群落的情况。为了比较N个群落,提出了一个由N - 1个指数组成的概况来表征群落间物种组成的相似性。基于样本丰度数据,获得了所提出指数及其方差的近似无偏估计量。这些广义的NESS和莫利西塔指数被应用于比较哥斯达黎加老龄和次生雨林样地内三个大小类别的植物数据(幼苗、幼树和树木)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验