Suppr超能文献

用于估算气相色谱中某些有机化合物定量校准因子的定量结构-性质关系研究。

Quantitative structure-property relationship study for estimation of quantitative calibration factors of some organic compounds in gas chromatography.

作者信息

Luan Feng, Liu Hui Tao, Wen Yingying, Zhang Xiaoyun

机构信息

Department of Applied Chemistry, Yantai University, Yantai 264005, PR China.

出版信息

Anal Chim Acta. 2008 Apr 7;612(2):126-35. doi: 10.1016/j.aca.2008.02.037. Epub 2008 Feb 26.

Abstract

Quantitative structure-property relationship (QSPR) models have been used to predict and explain gas chromatographic data of quantitative calibration factors (f(M)). This method allows for the prediction of quantitative calibration factors in a variety of organic compounds based on their structures alone. Stepwise multiple linear regression (MLR) and non-linear radial basis function neural network (RBFNN) were performed to build the models. The statistical characteristics provided by multiple linear model (R2=0.927, RMS=0.073; AARD=6.34% for test set) indicated satisfactory stability and predictive ability, while the predictive ability of RBFNN model is somewhat superior (R2=0.959; RMS=0.0648; AARD=4.85% for test set). This QSPR approach can contribute to a better understanding of structural factors of the compounds responsible for quantitative analysis by gas chromatography, and can be useful in predicting the quantitative calibration factors of other compounds.

摘要

定量结构-性质关系(QSPR)模型已被用于预测和解释定量校正因子(f(M))的气相色谱数据。该方法仅基于各种有机化合物的结构就能预测其定量校正因子。采用逐步多元线性回归(MLR)和非线性径向基函数神经网络(RBFNN)建立模型。多元线性模型提供的统计特征(R2 = 0.927,RMS = 0.073;测试集的AARD = 6.34%)表明其具有令人满意的稳定性和预测能力,而RBFNN模型的预测能力略胜一筹(R2 = 0.959;RMS = 0.0648;测试集的AARD = 4.85%)。这种QSPR方法有助于更好地理解气相色谱定量分析中化合物的结构因素,并且可用于预测其他化合物的定量校正因子。

相似文献

2
Prediction of quantitative calibration factors of some organic compounds in gas chromatography.
Analyst. 2008 Jul;133(7):881-7. doi: 10.1039/b800148k. Epub 2008 Apr 3.
3
Quantitative structure-lambda(max) relationship study on flavones by heuristic method and radial basis function neural network.
Anal Chim Acta. 2009 Sep 1;649(1):52-61. doi: 10.1016/j.aca.2009.07.013. Epub 2009 Jul 10.
4
Quantitative structure-retention relationships for organic pollutants in biopartitioning micellar chromatography.
Anal Chim Acta. 2007 Aug 13;598(1):12-8. doi: 10.1016/j.aca.2007.07.016. Epub 2007 Jul 30.
6
Prediction of hydrophile-lipophile balance values of anionic surfactants using a quantitative structure-property relationship.
J Colloid Interface Sci. 2009 Aug 15;336(2):773-9. doi: 10.1016/j.jcis.2009.04.002. Epub 2009 Apr 10.
7
A molecular structure based model for predicting surface tension of organic compounds.
SAR QSAR Environ Res. 2006 Oct;17(5):483-96. doi: 10.1080/10629360600933913.
8
QSPR model of Henry's law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach.
Chemosphere. 2007 Feb;66(11):2067-76. doi: 10.1016/j.chemosphere.2006.09.049. Epub 2006 Nov 20.
9
QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses.
J Comput Chem. 2011 Nov 30;32(15):3241-52. doi: 10.1002/jcc.21907. Epub 2011 Aug 12.
10
Quantitative structure-property relationship for predicting chlorine demand by organic molecules.
Environ Sci Technol. 2010 Apr 1;44(7):2503-8. doi: 10.1021/es903164d.

引用本文的文献

1
Chemometric modeling of odor threshold property of diverse aroma components of wine.
RSC Adv. 2018 Jan 25;8(9):4750-4760. doi: 10.1039/c7ra12295k. eCollection 2018 Jan 24.
2
Current mathematical methods used in QSAR/QSPR studies.
Int J Mol Sci. 2009 Apr 29;10(5):1978-1998. doi: 10.3390/ijms10051978.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验