Chen Hai-Feng
College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China.
Anal Chim Acta. 2008 Feb 18;609(1):24-36. doi: 10.1016/j.aca.2008.01.003. Epub 2008 Jan 8.
Support vector machines (SVM), radial basis function neural networks (RBFNN) and multiple linear regression (MLR) methods were used to investigate the correlation between GC retention indexes (RI) and physicochemical descriptors for both 174 and 132 diverse organic compounds. The correlation coefficient r(2) between experimental and predicted retention index for training and test sets by SVM, RBFNN and MLR is 0.986, 0.976 and 0.971 (for 174 compounds), 0.986, 0.951 and 0.963 (for 132 compounds) respectively. The results show that non-linear SVM derives statistical models have similar prediction ability to those of RBFNN and MLR methods. This indicates that SVM can be used as an alternative modeling tool for quantitative structure-property/activity relationship (QSPR/QSAR) studies.
支持向量机(SVM)、径向基函数神经网络(RBFNN)和多元线性回归(MLR)方法被用于研究174种和132种不同有机化合物的气相色谱保留指数(RI)与物理化学描述符之间的相关性。SVM、RBFNN和MLR对训练集和测试集的实验保留指数与预测保留指数之间的相关系数r(2)分别为0.986、0.976和0.971(针对174种化合物),0.986、0.951和0.963(针对132种化合物)。结果表明,非线性SVM推导的统计模型与RBFNN和MLR方法具有相似的预测能力。这表明SVM可作为定量结构-性质/活性关系(QSPR/QSAR)研究的替代建模工具。