Suppr超能文献

相似文献

1
Ankle fixation need not increase the energetic cost of human walking.
Gait Posture. 2008 Oct;28(3):427-33. doi: 10.1016/j.gaitpost.2008.01.016. Epub 2008 Mar 24.
2
Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking.
J Exp Biol. 2015 Nov;218(Pt 22):3541-50. doi: 10.1242/jeb.113910. Epub 2015 Sep 18.
3
Metabolic cost and mechanical work during walking after tibiotalar arthrodesis and the influence of footwear.
Clin Biomech (Bristol). 2010 Oct;25(8):809-15. doi: 10.1016/j.clinbiomech.2010.05.008. Epub 2010 Jun 22.
5
Does Modified Footwear Improve Gait After Ankle Arthrodesis?
J Foot Ankle Surg. 2016 Jan-Feb;55(1):5-8. doi: 10.1053/j.jfas.2015.01.010. Epub 2015 May 29.
6
Mechanics and energetics of load carriage during human walking.
J Exp Biol. 2014 Feb 15;217(Pt 4):605-13. doi: 10.1242/jeb.091587. Epub 2013 Nov 6.
8
Spring-like Ankle Foot Orthoses reduce the energy cost of walking by taking over ankle work.
Gait Posture. 2012 Jan;35(1):148-53. doi: 10.1016/j.gaitpost.2011.08.026. Epub 2011 Nov 1.
9
Mechanical and energetic consequences of rolling foot shape in human walking.
J Exp Biol. 2013 Jul 15;216(Pt 14):2722-31. doi: 10.1242/jeb.082347. Epub 2013 Apr 11.
10
Recycling energy to restore impaired ankle function during human walking.
PLoS One. 2010 Feb 17;5(2):e9307. doi: 10.1371/journal.pone.0009307.

引用本文的文献

1
Comparison of energy expenditure with level of amputation in patients with diabetes mellitus.
Wound Repair Regen. 2025 Jan-Feb;33(1):e70007. doi: 10.1111/wrr.70007.
4
Persons post-stroke improve step length symmetry by walking asymmetrically.
J Neuroeng Rehabil. 2020 Aug 3;17(1):105. doi: 10.1186/s12984-020-00732-z.
6
A unified perspective on ankle push-off in human walking.
J Exp Biol. 2016 Dec 1;219(Pt 23):3676-3683. doi: 10.1242/jeb.140376.
7
Simulating Ideal Assistive Devices to Reduce the Metabolic Cost of Running.
PLoS One. 2016 Sep 22;11(9):e0163417. doi: 10.1371/journal.pone.0163417. eCollection 2016.
8
Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking.
J Exp Biol. 2015 Nov;218(Pt 22):3541-50. doi: 10.1242/jeb.113910. Epub 2015 Sep 18.
10
Mechanical and energetic consequences of rolling foot shape in human walking.
J Exp Biol. 2013 Jul 15;216(Pt 14):2722-31. doi: 10.1242/jeb.082347. Epub 2013 Apr 11.

本文引用的文献

1
The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective.
Hum Mov Sci. 2007 Aug;26(4):617-56. doi: 10.1016/j.humov.2007.04.003. Epub 2007 Jul 6.
2
Energetic cost of producing cyclic muscle force, rather than work, to swing the human leg.
J Exp Biol. 2007 Jul;210(Pt 13):2390-8. doi: 10.1242/jeb.02782.
4
The advantages of a rolling foot in human walking.
J Exp Biol. 2006 Oct;209(Pt 20):3953-63. doi: 10.1242/jeb.02455.
5
Control of lateral balance in walking. Experimental findings in normal subjects and above-knee amputees.
Gait Posture. 2007 Feb;25(2):250-8. doi: 10.1016/j.gaitpost.2006.04.013. Epub 2006 Jun 5.
7
Mechanics and energetics of swinging the human leg.
J Exp Biol. 2005 Feb;208(Pt 3):439-45. doi: 10.1242/jeb.01408.
8
The effects of rocker sole and SACH heel on kinematics in gait.
Med Eng Phys. 2004 Oct;26(8):639-46. doi: 10.1016/j.medengphy.2004.05.003.
9
Mechanical and metabolic requirements for active lateral stabilization in human walking.
J Biomech. 2004 Jun;37(6):827-35. doi: 10.1016/j.jbiomech.2003.06.002.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验