Fulgenzi Fabiana R, Peralta María Luisa, Mangano Silvina, Danna Cristian H, Vallejo Augusto J, Puigdomenech Pere, Santa-María Guillermo E
Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Tecnología Industrial, San Martín 1650, Provincia de Buenos Aires, Argentina.
Plant Physiol. 2008 May;147(1):252-62. doi: 10.1104/pp.107.114546. Epub 2008 Mar 21.
The control of potassium (K+) acquisition is a critical requirement for plant growth. Although HAK1 (high affinity K+ 1) transporters provide a pathway for K+ acquisition, the effect exerted by the ionic environment on their contribution to K+ capture remains essentially unknown. Here, the influence of the ionic environment on the accumulation of transcripts coding for the barley (Hordeum vulgare) HvHAK1 transporter as well as on HvHAK1-mediated K+ capture has been examined. In situ mRNA hybridization studies show that HvHAK1 expression occurs in most root cells, being augmented at the outermost cell layers. Accumulation of HvHAK1 transcripts is enhanced by K+ deprivation and transiently by exposure to high salt concentrations. In addition, studies on the accumulation of transcripts coding for HvHAK1 and its close homolog HvHAK1b revealed the presence of two K+-responsive pathways, one repressed and the other insensitive to ammonium. Experiments with Arabidopsis (Arabidopsis thaliana) HvHAK1-expressing transgenic plants showed that K+ deprivation enhances the capture of K+ mediated by HvHAK1. A detailed study with HvHAK1-expressing Saccharomyces cerevisiae cells also revealed an increase of K+ uptake after K+ starvation. This increase did not occur in cells grown at high Na+ concentrations but took place for cells grown in the presence of NH4+. 3,3'-Dihexyloxacarbocyanine iodide accumulation measurements indicate that the increased capture of K+ in HvHAK1-expressing yeast cells cannot be explained only by changes in the membrane potential. It is shown that the yeast protein phosphatase PPZ1 as well as the halotolerance HAL4/HAL5 kinases negatively regulate the HvHAK1-mediated K+ transport.
钾(K⁺)吸收的调控是植物生长的关键需求。尽管HAK1(高亲和性K⁺转运蛋白1)转运体为K⁺吸收提供了一条途径,但离子环境对其在K⁺捕获中所起作用的影响基本上仍不清楚。在此,研究了离子环境对大麦(Hordeum vulgare)HvHAK1转运体编码转录本积累以及对HvHAK1介导的K⁺捕获的影响。原位mRNA杂交研究表明,HvHAK1表达发生在大多数根细胞中,在最外层细胞层中增强。K⁺缺乏会增强HvHAK1转录本的积累,而暴露于高盐浓度下则会使其短暂增强。此外,对HvHAK1及其紧密同源物HvHAK1b编码转录本积累的研究揭示了存在两条K⁺响应途径,一条受抑制,另一条对铵不敏感。对表达拟南芥(Arabidopsis thaliana)HvHAK1的转基因植物进行的实验表明,K⁺缺乏会增强HvHAK1介导的K⁺捕获。对表达HvHAK1的酿酒酵母细胞进行的详细研究还揭示了K⁺饥饿后K⁺吸收增加。这种增加在高Na⁺浓度下生长的细胞中未发生,但在存在NH₄⁺的情况下生长的细胞中发生。3,3'-二己基氧杂羰花青碘化物积累测量表明,表达HvHAK1的酵母细胞中K⁺捕获增加不能仅通过膜电位变化来解释。结果表明,酵母蛋白磷酸酶PPZ1以及耐盐性HAL4/HAL5激酶对HvHAK1介导的K⁺转运起负调控作用。