Suppr超能文献

钾转运蛋白AtHAK5在拟南芥根中缺钾诱导的高亲和性钾吸收以及AKT1钾通道对钾吸收动力学的贡献中发挥作用。

The potassium transporter AtHAK5 functions in K(+) deprivation-induced high-affinity K(+) uptake and AKT1 K(+) channel contribution to K(+) uptake kinetics in Arabidopsis roots.

作者信息

Gierth Markus, Mäser Pascal, Schroeder Julian I

机构信息

Division of Biological Sciences, Cell and Developmental Biology Section and Center for Molecular Genetics, University of California San Diego, La Jolla, California 92093-0116, USA.

出版信息

Plant Physiol. 2005 Mar;137(3):1105-14. doi: 10.1104/pp.104.057216. Epub 2005 Feb 25.

Abstract

Potassium is an important macronutrient and the most abundant cation in plants. Because soil mineral conditions can vary, plants must be able to adjust to different nutrient availabilities. Here, we used Affymetrix Genechip microarrays to identify genes responsive to potassium (K(+)) deprivation in roots of mature Arabidopsis (Arabidopsis thaliana) plants. Unexpectedly, only a few genes were changed in their expression level after 6, 48, and 96 h of K(+) starvation even though root K(+) content was reduced by approximately 60%. AtHAK5, a potassium transporter gene from the KUP/HAK/KT family, was most consistently and strongly up-regulated in its expression level across 48-h, 96-h, and 7-d K(+) deprivation experiments. AtHAK5 promoter-beta-glucuronidase and -green fluorescent protein fusions showed AtHAK5 promoter activity in the epidermis and vasculature of K(+) deprived roots. Rb(+) uptake kinetics in roots of athak5 T-DNA insertion mutants and wild-type plants demonstrated the absence of a major part of an inducible high-affinity Rb(+)/K(+) (K(m) approximately 15-24 microm) transport system in athak5 plants. In comparative analyses, uptake kinetics of the K(+) channel mutant akt1-1 showed that akt1-1 roots are mainly impaired in a major transport mechanism, with an apparent affinity of approximately 0.9 mm K(+)(Rb(+)). Data show adaptation of apparent K(+) affinities of Arabidopsis roots when individual K(+) transporter genes are disrupted. In addition, the limited transcriptome-wide response to K(+) starvation indicates that posttranscriptional mechanisms may play important roles in root adaptation to K(+) availability in Arabidopsis. The results demonstrate an in vivo function for AtHAK5 in the inducible high-affinity K(+) uptake system in Arabidopsis roots.

摘要

钾是一种重要的大量营养素,也是植物中含量最丰富的阳离子。由于土壤矿物质条件会有所不同,植物必须能够适应不同的养分有效性。在此,我们使用Affymetrix基因芯片微阵列来鉴定成熟拟南芥(Arabidopsis thaliana)植株根系中对钾(K⁺)缺乏作出响应的基因。出乎意料的是,即使根系K⁺含量降低了约60%,在K⁺饥饿6小时、48小时和96小时后,只有少数基因的表达水平发生了变化。AtHAK5是KUP/HAK/KT家族的一个钾转运蛋白基因,在48小时、96小时和7天的K⁺缺乏实验中,其表达水平最一致且强烈地上调。AtHAK5启动子-β-葡萄糖醛酸酶和-绿色荧光蛋白融合体在K⁺缺乏根系的表皮和维管组织中显示出AtHAK5启动子活性。athak5 T-DNA插入突变体和野生型植株根系中的Rb⁺吸收动力学表明,athak5植株中诱导型高亲和力Rb⁺/K⁺(Kₘ约为15 - 24 μmol)转运系统的主要部分缺失。在比较分析中,K⁺通道突变体akt1-1的吸收动力学表明,akt1-1根系主要在一种主要转运机制中受损,其对K⁺(Rb⁺)的表观亲和力约为0.9 mmol。数据表明,当单个K⁺转运蛋白基因被破坏时,拟南芥根系的表观K⁺亲和力会发生适应性变化。此外,对K⁺饥饿的有限全转录组响应表明,转录后机制可能在拟南芥根系对K⁺有效性的适应中发挥重要作用。结果证明了AtHAK5在拟南芥根系诱导型高亲和力K⁺吸收系统中的体内功能。

相似文献

7
Modulation of K translocation by AKT1 and AtHAK5 in Arabidopsis plants.拟南芥中 AKT1 和 AtHAK5 对 K 转运的调节。
Plant Cell Environ. 2019 Aug;42(8):2357-2371. doi: 10.1111/pce.13573. Epub 2019 Jun 10.

引用本文的文献

2
Negatively Regulates Salt Stress Tolerance in .负向调控……中的盐胁迫耐受性
Plants (Basel). 2025 May 19;14(10):1514. doi: 10.3390/plants14101514.
5
Advances in deciphering the mechanisms of salt tolerance in Maize.玉米耐盐机制解析的进展
Plant Signal Behav. 2025 Dec;20(1):2479513. doi: 10.1080/15592324.2025.2479513. Epub 2025 Mar 18.
6
Salinity survival: molecular mechanisms and adaptive strategies in plants.盐度耐受性:植物中的分子机制与适应性策略
Front Plant Sci. 2025 Feb 28;16:1527952. doi: 10.3389/fpls.2025.1527952. eCollection 2025.

本文引用的文献

1
Response: high-affinity potassium uptake in plants.反应:植物中高亲和力钾的吸收
Science. 1996 Aug 16;273(5277):978-9. doi: 10.1126/science.273.5277.978.
7
RESOLUTION OF DUAL MECHANISMS OF POTASSIUM ABSORPTION BY BARLEY ROOTS.大麦根吸收钾的双重机制解析
Proc Natl Acad Sci U S A. 1963 May;49(5):684-92. doi: 10.1073/pnas.49.5.684.
10
Hydrogen peroxide mediates plant root cell response to nutrient deprivation.过氧化氢介导植物根系细胞对营养缺乏的反应。
Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8827-32. doi: 10.1073/pnas.0401707101. Epub 2004 Jun 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验