Gierth Markus, Mäser Pascal, Schroeder Julian I
Division of Biological Sciences, Cell and Developmental Biology Section and Center for Molecular Genetics, University of California San Diego, La Jolla, California 92093-0116, USA.
Plant Physiol. 2005 Mar;137(3):1105-14. doi: 10.1104/pp.104.057216. Epub 2005 Feb 25.
Potassium is an important macronutrient and the most abundant cation in plants. Because soil mineral conditions can vary, plants must be able to adjust to different nutrient availabilities. Here, we used Affymetrix Genechip microarrays to identify genes responsive to potassium (K(+)) deprivation in roots of mature Arabidopsis (Arabidopsis thaliana) plants. Unexpectedly, only a few genes were changed in their expression level after 6, 48, and 96 h of K(+) starvation even though root K(+) content was reduced by approximately 60%. AtHAK5, a potassium transporter gene from the KUP/HAK/KT family, was most consistently and strongly up-regulated in its expression level across 48-h, 96-h, and 7-d K(+) deprivation experiments. AtHAK5 promoter-beta-glucuronidase and -green fluorescent protein fusions showed AtHAK5 promoter activity in the epidermis and vasculature of K(+) deprived roots. Rb(+) uptake kinetics in roots of athak5 T-DNA insertion mutants and wild-type plants demonstrated the absence of a major part of an inducible high-affinity Rb(+)/K(+) (K(m) approximately 15-24 microm) transport system in athak5 plants. In comparative analyses, uptake kinetics of the K(+) channel mutant akt1-1 showed that akt1-1 roots are mainly impaired in a major transport mechanism, with an apparent affinity of approximately 0.9 mm K(+)(Rb(+)). Data show adaptation of apparent K(+) affinities of Arabidopsis roots when individual K(+) transporter genes are disrupted. In addition, the limited transcriptome-wide response to K(+) starvation indicates that posttranscriptional mechanisms may play important roles in root adaptation to K(+) availability in Arabidopsis. The results demonstrate an in vivo function for AtHAK5 in the inducible high-affinity K(+) uptake system in Arabidopsis roots.
钾是一种重要的大量营养素,也是植物中含量最丰富的阳离子。由于土壤矿物质条件会有所不同,植物必须能够适应不同的养分有效性。在此,我们使用Affymetrix基因芯片微阵列来鉴定成熟拟南芥(Arabidopsis thaliana)植株根系中对钾(K⁺)缺乏作出响应的基因。出乎意料的是,即使根系K⁺含量降低了约60%,在K⁺饥饿6小时、48小时和96小时后,只有少数基因的表达水平发生了变化。AtHAK5是KUP/HAK/KT家族的一个钾转运蛋白基因,在48小时、96小时和7天的K⁺缺乏实验中,其表达水平最一致且强烈地上调。AtHAK5启动子-β-葡萄糖醛酸酶和-绿色荧光蛋白融合体在K⁺缺乏根系的表皮和维管组织中显示出AtHAK5启动子活性。athak5 T-DNA插入突变体和野生型植株根系中的Rb⁺吸收动力学表明,athak5植株中诱导型高亲和力Rb⁺/K⁺(Kₘ约为15 - 24 μmol)转运系统的主要部分缺失。在比较分析中,K⁺通道突变体akt1-1的吸收动力学表明,akt1-1根系主要在一种主要转运机制中受损,其对K⁺(Rb⁺)的表观亲和力约为0.9 mmol。数据表明,当单个K⁺转运蛋白基因被破坏时,拟南芥根系的表观K⁺亲和力会发生适应性变化。此外,对K⁺饥饿的有限全转录组响应表明,转录后机制可能在拟南芥根系对K⁺有效性的适应中发挥重要作用。结果证明了AtHAK5在拟南芥根系诱导型高亲和力K⁺吸收系统中的体内功能。