Shirley E L, Terraciano M L
Appl Opt. 2001 Sep 1;40(25):4463-72. doi: 10.1364/ao.40.004463.
Two mathematical innovations are presented that relate to calculating propagation of radiation through cylindrically symmetrical systems using Kirchhoff diffraction theory. The first innovation leads to an efficient means of computing Lommel functions of two arguments (u and nu), typically denoted by U(n)(u, nu) and V(n)(u, nu). This can accelerate computations involving Fresnel diffraction by circular apertures or lenses. The second innovation facilitates calculations of Kirchhoff diffraction integrals without recourse to the Fresnel approximation, yet with greatly improved efficiency like that characteristic of the latter approximation.
本文提出了两项数学创新成果,它们涉及使用基尔霍夫衍射理论计算辐射在圆柱对称系统中的传播。第一项创新成果带来了一种高效计算双变量洛梅尔函数(u和ν)的方法,通常表示为U(n)(u, ν)和V(n)(u, ν)。这可以加速涉及圆孔或透镜菲涅耳衍射的计算。第二项创新成果有助于在不借助菲涅耳近似的情况下计算基尔霍夫衍射积分,但具有与后一种近似类似的显著提高的效率。