Certal Ana C, Almeida Ricardo B, Carvalho Lara M, Wong Eric, Moreno Nuno, Michard Erwan, Carneiro Jorge, Rodriguéz-Léon Joaquín, Wu Hen-Ming, Cheung Alice Y, Feijó José A
Instituto Gulbenkian de Ciência, Centro de Biologia do Desenvolvimento, 2780-156 Oeiras, Portugal.
Plant Cell. 2008 Mar;20(3):614-34. doi: 10.1105/tpc.106.047423. Epub 2008 Mar 25.
Polarized growth in pollen tubes results from exocytosis at the tip and is associated with conspicuous polarization of Ca(2+), H(+), K(+), and Cl(-) -fluxes. Here, we show that cell polarity in Nicotiana tabacum pollen is associated with the exclusion of a novel pollen-specific H(+)-ATPase, Nt AHA, from the growing apex. Nt AHA colocalizes with extracellular H(+) effluxes, which revert to influxes where Nt AHA is absent. Fluorescence recovery after photobleaching analysis showed that Nt AHA moves toward the apex of growing pollen tubes, suggesting that the major mechanism of insertion is not through apical exocytosis. Nt AHA mRNA is also excluded from the tip, suggesting a mechanism of polarization acting at the level of translation. Localized applications of the cation ionophore gramicidin A had no effect where Nt AHA was present but acidified the cytosol and induced reorientation of the pollen tube where Nt AHA was absent. Transgenic pollen overexpressing Nt AHA-GFP developed abnormal callose plugs accompanied by abnormal H(+) flux profiles. Furthermore, there is no net flux of H(+) in defined patches of membrane where callose plugs are to be formed. Taken together, our results suggest that proton dynamics may underlie basic mechanisms of polarity and spatial regulation in growing pollen tubes.
花粉管中的极性生长源于顶端的胞吐作用,并与Ca(2+)、H(+)、K(+)和Cl(-)通量的显著极化相关。在这里,我们表明烟草花粉中的细胞极性与一种新型花粉特异性H(+)-ATP酶Nt AHA从生长顶端的排除有关。Nt AHA与细胞外H(+)外流共定位,在Nt AHA不存在的地方H(+)外流转变为内流。光漂白后荧光恢复分析表明,Nt AHA向生长中的花粉管顶端移动,这表明其插入的主要机制不是通过顶端胞吐作用。Nt AHA mRNA也被排除在顶端之外,这表明在翻译水平上存在一种极化机制。阳离子离子载体短杆菌肽A的局部应用在Nt AHA存在的地方没有效果,但在Nt AHA不存在的地方会使细胞质酸化并诱导花粉管重新定向。过表达Nt AHA-GFP的转基因花粉形成异常的胼胝质塞,并伴有异常的H(+)通量分布。此外,在将要形成胼胝质塞的特定膜区域中没有H(+)的净通量。综上所述,我们的结果表明质子动力学可能是生长中的花粉管极性和空间调节基本机制的基础。