Suppr超能文献

在现场研究中根据不完整的加速度计数据估算身体活动。

Estimating physical activity from incomplete accelerometer data in field studies.

作者信息

Alhassan Sofiya, Sirard John R, Spencer Tirzah R, Varady Ann, Robinson Thomas N

机构信息

Dept of Kinesiology, University of Massachusetts, Amherts, MA 01003-0258, USA.

出版信息

J Phys Act Health. 2008;5 Suppl 1:S112-25. doi: 10.1123/jpah.5.s1.s112.

Abstract

BACKGROUND

The purpose of this study was to develop a data-driven approach for analyzing incomplete accelerometer data from field-base studies.

METHODS

Multiple days of accelerometer data from the Stanford Girls health Enrichment Multi-site Studies (N = 294 African American girls) were summed across each minute of each day to produce a composite weekday and weekend day. Composite method estimates of physical activity were compared with those derived from methods typically described in the literature (comparison methods).

RESULTS

The composite method retained 99.7% and 100% of participants in weekday and weekend-day analysis, respectively, versus 84.7% to 94.2% and 28.6% to 99.0% for the comparison methods. Average wearing times for the composite method for weekday and weekend day were 99.6% and 98.6%, respectively, 91.7% to 93.9% and 82.3% to 95.4% for the comparison methods. Composite-method physical activity estimates were similar to comparison-methods estimates.

CONCLUSION

The composite method used more available accelerometer data than standard approaches, reducing the need to exclude periods within a day, entire days, and participants from analysis.

摘要

背景

本研究的目的是开发一种数据驱动的方法,用于分析来自现场研究的不完整加速度计数据。

方法

对斯坦福女孩健康促进多地点研究(N = 294名非裔美国女孩)中多天的加速度计数据按每天的每分钟进行汇总,以生成工作日和周末的综合数据。将综合方法得出的身体活动估计值与文献中通常描述的方法(比较方法)得出的估计值进行比较。

结果

在工作日和周末分析中,综合方法分别保留了99.7%和100%的参与者,而比较方法的保留率为84.7%至94.2%和28.6%至99.0%。综合方法在工作日和周末的平均佩戴时间分别为99.6%和98.6%,比较方法的平均佩戴时间为91.7%至93.9%和82.3%至95.4%。综合方法得出的身体活动估计值与比较方法得出的估计值相似。

结论

与标准方法相比,综合方法使用了更多可用的加速度计数据,减少了在分析中排除一天内的时间段、整天以及参与者的需求。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验