Suppr超能文献

惯性注入水相纳米液滴中的绿色荧光蛋白。

Green fluorescent protein in inertially injected aqueous nanodroplets.

作者信息

Tang Jianyong, Jofre Ana M, Lowman Geoffrey M, Kishore Rani B, Reiner Joseph E, Helmerson Kristian, Goldner Lori S, Greene Mark E

机构信息

Physics Laboratory and Electronics and Electrical Engineering Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA.

出版信息

Langmuir. 2008 May 6;24(9):4975-8. doi: 10.1021/la800329k. Epub 2008 Mar 27.

Abstract

We inertially inject and study the contents of optically trappable aqueous nanodroplets (hydrosomes) emulsified in a perfluorinated matrix. A new piezoelectric actuated device for production of single hydrosomes on demand is introduced. Hydrosomes containing enhanced green fluorescent protein (EGFP) were injected, optically trapped, and held at the focus of an excitation laser in a confocal microscope, and single-molecule photobleaching events were observed. The rotational diffusion time of EGFP in trapped hydrosomes was measured using time-resolved fluorescence anisotropy. In free solution, the mean rotational diffusion time was determined to be 13.8 +/- 0.1 ns at 3 microM and 14.0 +/- 0.2 ns at 10 microM. In hydrosomes, the mean rotational diffusion time was similar and determined to be 12.6 +/- 1.0 ns at 3 microM and 15.5 +/- 1.6 ns at 10 microM. We conclude that the rotational motion inside the nanodroplets is consistent with rotation in free solution and that the protein therefore does not aggregate at the water-oil interface. Protein can be confined in hydrosomes with high efficiency using this technique, which provides an alternative to surface attachment or lipid encapsulation and opens up new avenues of research using single molecules contained in fluid nanovolumes.

摘要

我们对全氟基质中乳化的可光捕获水性纳米液滴(水小体)的内容物进行惯性注入并开展研究。介绍了一种新型压电驱动装置,用于按需生产单个水小体。将含有增强型绿色荧光蛋白(EGFP)的水小体注入、光捕获并保持在共聚焦显微镜中激发激光的焦点处,观察到单分子光漂白事件。使用时间分辨荧光各向异性测量了EGFP在捕获的水小体中的旋转扩散时间。在自由溶液中,3 microM时平均旋转扩散时间确定为13.8±0.1 ns,10 microM时为14.0±0.2 ns。在水小体中,平均旋转扩散时间相似,3 microM时为12.6±1.0 ns,10 microM时为15.5±1.6 ns。我们得出结论,纳米液滴内的旋转运动与自由溶液中的旋转一致,因此蛋白质不会在水油界面聚集。使用该技术可高效地将蛋白质限制在水小体中,这为表面附着或脂质包封提供了一种替代方法,并为利用流体纳米体积中包含的单分子开辟了新的研究途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验