Xu Hong, Dude Carolynn M, Baker Clare V H
University of Cambridge, Department of Physiology, Development and Neuroscience, Anatomy Building, Downing Street, Cambridge CB2 3DY, UK.
Dev Biol. 2008 May 1;317(1):174-86. doi: 10.1016/j.ydbio.2008.02.012. Epub 2008 Feb 21.
Vertebrate cranial ectodermal placodes are transient, paired thickenings of embryonic head ectoderm that are crucial for the formation of the peripheral sensory nervous system: they give rise to the paired peripheral sense organs (olfactory organs, inner ears and anamniote lateral line system), as well as the eye lenses, and most cranial sensory neurons. Here, we present the first detailed spatiotemporal fate-maps in any vertebrate for the ophthalmic trigeminal (opV) and maxillomandibular trigeminal (mmV) placodes, which give rise to cutaneous sensory neurons in the ophthalmic and maxillomandibular lobes of the trigeminal ganglion. We used focal DiI and DiO labelling to produce eight detailed fate-maps of chick embryonic head ectoderm over approximately 24 h of development, from 0-16 somites. OpV and mmV placode precursors arise from a partially overlapping territory; indeed, some individual dyespots labelled both opV and mmV placode-derived cells. OpV and mmV placode precursors are initially scattered within a relatively large region of ectoderm adjacent to the neural folds, intermingled both with each other and with future epidermal cells, and with geniculate and otic placode precursors. Although the degree of segregation increases with time, there is no clear border between the opV and mmV placodes even at the 16-somite stage, long after neurogenesis has begun in the opV placode, and when neurogenesis is just beginning in the mmV placode. Finally, we find that occasional cells in the border region between the opV placode and mmV placode express both Pax3 (an opV placode specific marker) and Neurogenin1 (an mmV placode specific marker), suggesting that a few cells are responding to both opV and mmV placode-inducing signals. Overall, our results fill a large gap in our knowledge of the early stages of development of both the opV and mmV placodes, providing an essential framework for subsequent studies of the molecular control of their development.
脊椎动物的颅外胚层基板是胚胎头部外胚层的短暂成对增厚,对于周围感觉神经系统的形成至关重要:它们产生成对的外周感觉器官(嗅觉器官、内耳和无羊膜动物侧线系统)、晶状体以及大多数颅感觉神经元。在此,我们展示了脊椎动物中首个关于眼三叉神经(opV)和上颌下颌三叉神经(mmV)基板的详细时空命运图谱,这两个基板产生三叉神经节眼叶和上颌下颌叶中的皮肤感觉神经元。我们使用局部DiI和DiO标记,在大约24小时的发育过程中(从0至16体节),绘制了鸡胚头部外胚层的八张详细命运图谱。opV和mmV基板前体源自部分重叠区域;实际上,一些单独的染料点标记了opV和mmV基板衍生的细胞。opV和mmV基板前体最初散布在与神经褶相邻的相对较大的外胚层区域内,它们相互混合,与未来的表皮细胞以及膝状和耳基板前体混合在一起。尽管分离程度随时间增加,但即使在16体节阶段,opV和mmV基板之间也没有明显边界,此时opV基板的神经发生已经开始很久,而mmV基板的神经发生才刚刚开始。最后,我们发现opV基板和mmV基板之间边界区域的偶尔细胞同时表达Pax3(opV基板特异性标记物)和Neurogenin1(mmV基板特异性标记物),这表明少数细胞对opV和mmV基板诱导信号都有反应。总体而言,我们的结果填补了我们对opV和mmV基板发育早期阶段认识上的巨大空白,为后续研究它们发育的分子控制提供了必要框架。