Suppr超能文献

转瞬即逝的网络所形成的持久记忆。

Long-lasting memory from evanescent networks.

作者信息

Routtenberg Aryeh

机构信息

Department of Psychology, Feinberg School of Medicine, Cresap Neuroscience Laboratory, Swift Hall, Room 102, 2029 Sheridan Rd, Northwestern University, Evanston, IL. 60208, USA.

出版信息

Eur J Pharmacol. 2008 May 6;585(1):60-3. doi: 10.1016/j.ejphar.2008.02.047. Epub 2008 Mar 4.

Abstract

Current models of memory typically require a protein synthetic step leading to a more or less permanent structural change in synapses of the network that represent the stored information. This instructive role of protein synthesis has recently been called into question [Routtenberg, A., Rekart, J.L. 2005. Post-translational modification of synaptic proteins as the substrate for long-lasting memory. Trends Neurosci. 28, 12-19]. In its place a new theory is proposed in which post-translational modifications (PTMs) of proteins already synthesized and present within the synapse calibrate synaptic strength. PTM is thus the only mechanism required to sustain long-lasting memories. Activity-induced, PTM-dependent structural modifications within brain synapses then define network formation which is thus a product of the concatenation of cascaded PTMs. This leads to a formulation different from current protein synthesis models in which neural networks initially formed from these individual synaptic PTM-dependent changes is maintained by regulated positive feedback maintains. One such positive feedback mechanism is 'cryptic rehearsal' typically referred to as 'noise' or 'spontaneous' activity. This activity is in fact not random or spontaneous but determined in a stochastic sense by the past history of activation of the nerve cell. To prevent promiscuous network formation, the regulated positive feedback maintains the altered state given specific decay kinetics for the PTM. The up or down state of individual synapses actually exists in an infinite number of intermediate states, never fully 'up', nor fully 'down.' The networks formed from these uncertain synapses are therefore metastable. A particular memory is also multiply represented by a 'degenerate code' so that should loss of a subset of representations occur, erasure can be protected against. This mechanism also solves the flexibility-stability problem by positing that the brain eschews synaptic stability having its own uncertainty principle that allows retrieval from a probabilistic network, so that a retrieved memory can be represented by a selection of components from an essentially infinite number of networks. The network so formed, that is the retrieval, thus emerges from a hierarchy of connectionistic probabilities. The relation of this new theory of memory network formation to current and potential computational implementations will benefit by its unusual point of initiation: deep concerns about the molecular substrates of information storage.

摘要

当前的记忆模型通常需要一个蛋白质合成步骤,该步骤会导致代表存储信息的网络突触发生或多或少的永久性结构变化。蛋白质合成的这种指导作用最近受到了质疑[Routtenberg, A., Rekart, J.L. 2005. 突触蛋白的翻译后修饰作为持久记忆的底物。《神经科学趋势》28, 12 - 19]。取而代之的是,有人提出了一种新理论,即已经合成并存在于突触内的蛋白质的翻译后修饰(PTM)校准突触强度。因此,PTM是维持持久记忆所需的唯一机制。大脑突触内由活动诱导的、依赖PTM的结构修饰进而定义了网络形成,因此网络形成是级联PTM串联的产物。这导致了一种与当前蛋白质合成模型不同的表述,在当前模型中,最初由这些个体依赖突触PTM的变化形成的神经网络是通过调节性正反馈维持的。一种这样的正反馈机制是“隐性复述”,通常被称为“噪声”或“自发”活动。这种活动实际上并非随机或自发的,而是在随机意义上由神经细胞过去的激活历史决定的。为了防止杂乱的网络形成,调节性正反馈在PTM具有特定衰减动力学的情况下维持改变后的状态。单个突触的上调或下调状态实际上存在于无数个中间状态中,永远不会完全“上调”,也不会完全“下调”。因此,由这些不确定的突触形成的网络是亚稳态的。一个特定的记忆也由“简并密码”多重表示,这样如果出现一部分表示的丢失,就可以防止记忆被擦除。这种机制还通过假定大脑避开突触稳定性,拥有自己允许从概率网络中检索的不确定性原理,从而解决了灵活性 - 稳定性问题,这样检索到的记忆可以由从本质上无限数量的网络中选择的组件来表示。如此形成的网络,即检索过程,因此从连接主义概率的层次结构中浮现出来。这种新的记忆网络形成理论与当前及潜在的计算实现方式的关系,将因其不寻常的起始点而受益:对信息存储分子底物的深切关注。

相似文献

1
Long-lasting memory from evanescent networks.转瞬即逝的网络所形成的持久记忆。
Eur J Pharmacol. 2008 May 6;585(1):60-3. doi: 10.1016/j.ejphar.2008.02.047. Epub 2008 Mar 4.
5
Lifetime memories from persistently supple synapses.持久灵活的突触产生终生记忆。
Hippocampus. 2013 Mar;23(3):202-6. doi: 10.1002/hipo.22088. Epub 2013 Jan 28.
10
Memory capacities for synaptic and structural plasticity.突触和结构可塑性的记忆容量。
Neural Comput. 2010 Feb;22(2):289-341. doi: 10.1162/neco.2009.08-07-588.

引用本文的文献

1
Limits of computational biology.计算生物学的局限性。
In Silico Biol. 2015;12(1-2):1-7. doi: 10.3233/ISB-140461.
2
Engram formation in psychiatric disorders.精神疾病中的记忆痕迹形成。
Front Neurosci. 2014 May 28;8:118. doi: 10.3389/fnins.2014.00118. eCollection 2014.
3
The molecular basis of memory.记忆的分子基础。
ACS Chem Neurosci. 2012 Aug 15;3(8):633-42. doi: 10.1021/cn300097b.

本文引用的文献

3
Cascade models of synaptically stored memories.突触存储记忆的级联模型。
Neuron. 2005 Feb 17;45(4):599-611. doi: 10.1016/j.neuron.2005.02.001.
6
Similar network activity from disparate circuit parameters.来自不同电路参数的相似网络活动。
Nat Neurosci. 2004 Dec;7(12):1345-52. doi: 10.1038/nn1352. Epub 2004 Nov 21.
9
Spike-timing dynamics of neuronal groups.神经元群体的峰电位时间动态
Cereb Cortex. 2004 Aug;14(8):933-44. doi: 10.1093/cercor/bhh053. Epub 2004 May 13.
10
Memory--a century of consolidation.记忆——一个世纪的巩固过程。
Science. 2000 Jan 14;287(5451):248-51. doi: 10.1126/science.287.5451.248.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验