Yakovleva Lyudmila, Chen Shengxi, Hecht Sidney M, Shuman Stewart
Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA.
J Biol Chem. 2008 Jun 6;283(23):16093-103. doi: 10.1074/jbc.M801595200. Epub 2008 Mar 25.
Vaccinia DNA topoisomerase IB (TopIB) relaxes supercoils by forming and resealing a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate. Here we gained new insights to the TopIB mechanism through "chemical mutagenesis." Meta-substituted analogs of Tyr(274) were introduced by in vitro translation in the presence of a chemically misacylated tRNA. We report that a meta-OH reduced the rate of DNA cleavage 130-fold without affecting the rate of religation. By contrast, meta-OCH(3) and NO(2) groups elicited only a 6-fold decrement in cleavage rate. We propose that the meta-OH uniquely suppresses deprotonation of the para-OH nucleophile during the cleavage step. Assembly of the vaccinia TopIB active site is triggered by protein contacts with a specific DNA sequence 5'-C(+5)C(+4)C(+3)T(+2)T(+1)p downward arrowN (where downward arrow denotes the cleavage site). A signature alpha-helix of the poxvirus TopIB ((132)GKMKYLKENETVG(144)) engages the target site in the major groove and thereby recruits catalytic residue Arg(130) to the active site. The effects of 11 missense mutations at Tyr(136) highlight the importance of van der Waals interactions with the 3'-G(+4)pG(+3)p dinucleotide of the nonscissile strand for DNA cleavage and supercoil relaxation. Asn(140) and Thr(142) donate hydrogen bonds to the pro-(S(p))-oxygen of the G(+3)pA(+2) phosphodiester of the nonscissile strand. Lys(133) and Lys(135) interact with purine nucleobases in the major groove. Whereas none of these side chains is essential per se, an N140A/T142A double mutation reduces the rate of supercoil relaxation and DNA cleavage by 120- and 30-fold, respectively, and a K133A/K135A double mutation slows relaxation and cleavage by 120- and 35-fold, respectively. These results underscore functional redundancy at the TopIB-DNA interface.
痘苗病毒DNA拓扑异构酶IB(TopIB)通过形成并重新封闭共价DNA-(3'-磷酸酪氨酸)-酶中间体来松弛超螺旋。在此,我们通过“化学诱变”对TopIB机制有了新的认识。在化学错配酰化tRNA存在的情况下,通过体外翻译引入Tyr(274)的间位取代类似物。我们报道,间位羟基使DNA切割速率降低了130倍,而不影响重新连接速率。相比之下,间位甲氧基和硝基仅使切割速率降低了6倍。我们提出,间位羟基在切割步骤中独特地抑制了对位羟基亲核试剂的去质子化。痘苗病毒TopIB活性位点的组装由蛋白质与特定DNA序列5'-C(+5)C(+4)C(+3)T(+2)T(+1)p向下箭头N(其中向下箭头表示切割位点)的接触触发。痘苗病毒TopIB的一个标志性α-螺旋((132)GKMKYLKENETVG(144))在大沟中与靶位点结合,从而将催化残基Arg(130)募集到活性位点。Tyr(136)处11个错义突变的影响突出了与非切割链的3'-G(+4)pG(+3)p二核苷酸的范德华相互作用对DNA切割和超螺旋松弛的重要性。Asn(140)和Thr(142)向非切割链的G(+3)pA(+2)磷酸二酯的前-(S(p))-氧提供氢键。Lys(133)和Lys(135)在大沟中与嘌呤碱基相互作用。虽然这些侧链本身都不是必需的,但N140A/T142A双突变分别使超螺旋松弛速率和DNA切割速率降低了120倍和30倍,而K133A/K135A双突变分别使松弛和切割速率减慢了120倍和35倍。这些结果强调了TopIB-DNA界面的功能冗余。