Suppr超能文献

环核苷酸调节通道门控过程中的C末端移动

C-terminal movement during gating in cyclic nucleotide-modulated channels.

作者信息

Craven Kimberley B, Olivier Nelson B, Zagotta William N

机构信息

Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.

出版信息

J Biol Chem. 2008 May 23;283(21):14728-38. doi: 10.1074/jbc.M710463200. Epub 2008 Mar 26.

Abstract

Activation of cyclic nucleotide-modulated channels such as CNG and HCN channels is promoted by ligand-induced conformational changes in their C-terminal regions. The primary intersubunit interface of these C termini includes two salt bridges per subunit, formed between three residues (one positively charged and two negatively charged amino acids) that we term the SB triad. We previously hypothesized that the SB triad is formed in the closed channel and breaks when the channel opens. Here we tested this hypothesis by dynamically manipulating the SB triad in functioning CNGA1 channels. Reversing the charge at positions Arg-431 and Glu-462, two of the SB triad residues, by either mutation or application of charged reagents increased the favorability of channel opening. To determine how a charge reversal mutation in the SB triad structurally affects the channel, we solved the crystal structure of the HCN2 C-terminal region with the equivalent E462R mutation. The backbone structure of this mutant was very similar to that of wild type, but the SB triad was rearranged such that both salt bridges did not always form simultaneously, suggesting a mechanism for the increased ease of opening of the mutant channels. To prevent movement in the SB triad, we tethered two components of the SB triad region together with cysteine-reactive cross-linkers. Preventing normal movement of the SB triad region with short cross-linkers inhibited channel opening, whereas longer cross-linkers did not. These results support our hypothesis that the SB triad forms in the closed channel and indicate that this region expands as the channel opens.

摘要

环核苷酸调节通道(如 CNG 和 HCN 通道)的激活是由其 C 末端区域中配体诱导的构象变化所促进的。这些 C 末端的主要亚基间界面每个亚基包含两个盐桥,由三个残基(一个带正电荷和两个带负电荷的氨基酸)之间形成,我们将其称为 SB 三联体。我们之前推测 SB 三联体在通道关闭时形成,在通道打开时断裂。在这里,我们通过动态操纵功能正常的 CNGA1 通道中的 SB 三联体来检验这一假设。通过突变或应用带电试剂反转 SB 三联体残基中的两个(Arg-431 和 Glu-462 位点)的电荷,增加了通道开放的可能性。为了确定 SB 三联体中的电荷反转突变在结构上如何影响通道,我们解析了具有等效 E462R 突变的 HCN2 C 末端区域的晶体结构。该突变体的主链结构与野生型非常相似,但 SB 三联体发生了重排,使得两个盐桥并非总是同时形成,这表明了突变通道更容易打开的一种机制。为了防止 SB 三联体移动,我们用半胱氨酸反应性交联剂将 SB 三联体区域的两个组分连接在一起。用短交联剂阻止 SB 三联体区域的正常移动会抑制通道开放,而长交联剂则不会。这些结果支持了我们的假设,即 SB 三联体在关闭的通道中形成,并表明该区域在通道打开时会扩展。

相似文献

1
C-terminal movement during gating in cyclic nucleotide-modulated channels.
J Biol Chem. 2008 May 23;283(21):14728-38. doi: 10.1074/jbc.M710463200. Epub 2008 Mar 26.
2
Salt bridges and gating in the COOH-terminal region of HCN2 and CNGA1 channels.
J Gen Physiol. 2004 Dec;124(6):663-77. doi: 10.1085/jgp.200409178.
4
The carboxyl-terminal region of cyclic nucleotide-modulated channels is a gating ring, not a permeation path.
Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):2742-7. doi: 10.1073/pnas.0408323102. Epub 2005 Feb 14.
5
Movement of the C-helix during the gating of cyclic nucleotide-gated channels.
Biophys J. 2002 Dec;83(6):3283-95. doi: 10.1016/S0006-3495(02)75329-0.
7
Functional roles of charged residues in the putative voltage sensor of the HCN2 pacemaker channel.
J Biol Chem. 2000 Nov 17;275(46):36465-71. doi: 10.1074/jbc.M007034200.
8
Structural basis for the cAMP-dependent gating in the human HCN4 channel.
J Biol Chem. 2010 Nov 19;285(47):37082-91. doi: 10.1074/jbc.M110.152033. Epub 2010 Sep 9.
10
Conformational changes in S6 coupled to the opening of cyclic nucleotide-gated channels.
Neuron. 2001 Jun;30(3):689-98. doi: 10.1016/s0896-6273(01)00324-5.

引用本文的文献

2
Domain Coupling in Allosteric Regulation of SthK Measured Using Time-Resolved Transition Metal Ion FRET.
bioRxiv. 2025 May 20:2025.03.31.646362. doi: 10.1101/2025.03.31.646362.
5
Mapping the contribution of the C-linker domain to gating polarity in CNBD channels.
Biophys J. 2024 Jul 16;123(14):2176-2184. doi: 10.1016/j.bpj.2024.04.022. Epub 2024 Apr 27.
6
Uncoupling of Voltage- and Ligand-Induced Activation in HCN2 Channels by Glycine Inserts.
Front Physiol. 2022 Aug 25;13:895324. doi: 10.3389/fphys.2022.895324. eCollection 2022.
8
Gating movements and ion permeation in HCN4 pacemaker channels.
Mol Cell. 2021 Jul 15;81(14):2929-2943.e6. doi: 10.1016/j.molcel.2021.05.033. Epub 2021 Jun 23.
9
Allosteric signaling in C-linker and cyclic nucleotide-binding domain of HCN2 channels.
Biophys J. 2021 Mar 2;120(5):950-963. doi: 10.1016/j.bpj.2021.01.017. Epub 2021 Jan 28.
10
cyclic AMP Regulation and Its Command in the Pacemaker Channel HCN4.
Front Physiol. 2020 Jul 7;11:771. doi: 10.3389/fphys.2020.00771. eCollection 2020.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Structural dynamics in the gating ring of cyclic nucleotide-gated ion channels.
Nat Struct Mol Biol. 2007 Sep;14(9):854-60. doi: 10.1038/nsmb1281. Epub 2007 Aug 12.
3
Structure and rearrangements in the carboxy-terminal region of SpIH channels.
Structure. 2007 Jun;15(6):671-82. doi: 10.1016/j.str.2007.04.008.
5
CNG and HCN channels: two peas, one pod.
Annu Rev Physiol. 2006;68:375-401. doi: 10.1146/annurev.physiol.68.040104.134728.
6
The carboxyl-terminal region of cyclic nucleotide-modulated channels is a gating ring, not a permeation path.
Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):2742-7. doi: 10.1073/pnas.0408323102. Epub 2005 Feb 14.
7
Coot: model-building tools for molecular graphics.
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32. doi: 10.1107/S0907444904019158. Epub 2004 Nov 26.
8
Salt bridges and gating in the COOH-terminal region of HCN2 and CNGA1 channels.
J Gen Physiol. 2004 Dec;124(6):663-77. doi: 10.1085/jgp.200409178.
9
Refinement of macromolecular structures by the maximum-likelihood method.
Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55. doi: 10.1107/S0907444996012255.
10
Assessment of phase accuracy by cross validation: the free R value. Methods and applications.
Acta Crystallogr D Biol Crystallogr. 1993 Jan 1;49(Pt 1):24-36. doi: 10.1107/S0907444992007352.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验