Scott C, Lyons T W, Bekker A, Shen Y, Poulton S W, Chu X, Anbar A D
Department of Earth Sciences, University of California, Riverside, California 92521, USA.
Nature. 2008 Mar 27;452(7186):456-9. doi: 10.1038/nature06811.
Biogeochemical signatures preserved in ancient sedimentary rocks provide clues to the nature and timing of the oxygenation of the Earth's atmosphere. Geochemical data suggest that oxygenation proceeded in two broad steps near the beginning and end of the Proterozoic eon (2,500 to 542 million years ago). The oxidation state of the Proterozoic ocean between these two steps and the timing of deep-ocean oxygenation have important implications for the evolutionary course of life on Earth but remain poorly known. Here we present a new perspective on ocean oxygenation based on the authigenic accumulation of the redox-sensitive transition element molybdenum in sulphidic black shales. Accumulation of authigenic molybdenum from sea water is already seen in shales by 2,650 Myr ago; however, the small magnitudes of these enrichments reflect weak or transient sources of dissolved molybdenum before about 2,200 Myr ago, consistent with minimal oxidative weathering of the continents. Enrichments indicative of persistent and vigorous oxidative weathering appear in shales deposited at roughly 2,150 Myr ago, more than 200 million years after the initial rise in atmospheric oxygen. Subsequent expansion of sulphidic conditions after about 1,800 Myr ago (refs 8, 9) maintained a mid-Proterozoic molybdenum reservoir below 20 per cent of the modern inventory, which in turn may have acted as a nutrient feedback limiting the spatiotemporal distribution of euxinic (sulphidic) bottom waters and perhaps the evolutionary and ecological expansion of eukaryotic organisms. By 551 Myr ago, molybdenum contents reflect a greatly expanded oceanic reservoir due to oxygenation of the deep ocean and corresponding decrease in sulphidic conditions in the sediments and water column.
保存在古代沉积岩中的生物地球化学特征为地球大气氧化的性质和时间提供了线索。地球化学数据表明,在元古宙(25亿至5.42亿年前)开始和结束时,氧化过程大致分两个阶段进行。这两个阶段之间元古宙海洋的氧化状态以及深海氧化的时间对地球上生命的进化过程具有重要意义,但仍知之甚少。在此,我们基于氧化还原敏感过渡元素钼在硫化黑色页岩中的自生堆积,提出了一个关于海洋氧化的新观点。到26.5亿年前,页岩中已出现海水自生钼的堆积;然而,这些富集程度较小,反映出在约22亿年前之前,溶解钼的来源较弱或短暂,这与大陆上最小程度的氧化风化一致。指示持续且强烈氧化风化的富集现象出现在大约21.5亿年前沉积的页岩中,这比大气氧最初上升晚了2亿多年。在约18亿年前之后(参考文献8、9),硫化条件的随后扩张使中元古代钼储量维持在现代储量的20%以下,这反过来可能作为一种营养反馈,限制了富氧(硫化)底层水的时空分布,或许还限制了真核生物的进化和生态扩张。到5.51亿年前,由于深海氧化以及沉积物和水柱中硫化条件相应减少,钼含量反映出海洋储量大幅增加。