Suppr超能文献

发色团质子化状态控制荧光蛋白asFP595的光开关作用。

Chromophore protonation state controls photoswitching of the fluoroprotein asFP595.

作者信息

Schäfer Lars V, Groenhof Gerrit, Boggio-Pasqua Martial, Robb Michael A, Grubmüller Helmut

机构信息

Department of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.

出版信息

PLoS Comput Biol. 2008 Mar 21;4(3):e1000034. doi: 10.1371/journal.pcbi.1000034.

Abstract

Fluorescent proteins have been widely used as genetically encodable fusion tags for biological imaging. Recently, a new class of fluorescent proteins was discovered that can be reversibly light-switched between a fluorescent and a non-fluorescent state. Such proteins can not only provide nanoscale resolution in far-field fluorescence optical microscopy much below the diffraction limit, but also hold promise for other nanotechnological applications, such as optical data storage. To systematically exploit the potential of such photoswitchable proteins and to enable rational improvements to their properties requires a detailed understanding of the molecular switching mechanism, which is currently unknown. Here, we have studied the photoswitching mechanism of the reversibly switchable fluoroprotein asFP595 at the atomic level by multiconfigurational ab initio (CASSCF) calculations and QM/MM excited state molecular dynamics simulations with explicit surface hopping. Our simulations explain measured quantum yields and excited state lifetimes, and also predict the structures of the hitherto unknown intermediates and of the irreversibly fluorescent state. Further, we find that the proton distribution in the active site of the asFP595 controls the photochemical conversion pathways of the chromophore in the protein matrix. Accordingly, changes in the protonation state of the chromophore and some proximal amino acids lead to different photochemical states, which all turn out to be essential for the photoswitching mechanism. These photochemical states are (i) a neutral chromophore, which can trans-cis photoisomerize, (ii) an anionic chromophore, which rapidly undergoes radiationless decay after excitation, and (iii) a putative fluorescent zwitterionic chromophore. The overall stability of the different protonation states is controlled by the isomeric state of the chromophore. We finally propose that radiation-induced decarboxylation of the glutamic acid Glu215 blocks the proton transfer pathways that enable the deactivation of the zwitterionic chromophore and thus leads to irreversible fluorescence. We have identified the tight coupling of trans-cis isomerization and proton transfers in photoswitchable proteins to be essential for their function and propose a detailed underlying mechanism, which provides a comprehensive picture that explains the available experimental data. The structural similarity between asFP595 and other fluoroproteins of interest for imaging suggests that this coupling is a quite general mechanism for photoswitchable proteins. These insights can guide the rational design and optimization of photoswitchable proteins.

摘要

荧光蛋白已被广泛用作生物成像中可遗传编码的融合标签。最近,发现了一类新的荧光蛋白,它们可以在荧光态和非荧光态之间可逆地光开关切换。这类蛋白不仅能在远场荧光光学显微镜中提供远低于衍射极限的纳米级分辨率,还在诸如光学数据存储等其他纳米技术应用方面展现出前景。要系统地挖掘此类光开关蛋白的潜力并合理改进其性能,需要详细了解目前尚不清楚的分子开关机制。在此,我们通过多组态从头算(CASSCF)计算以及带有显式表面跳跃的QM/MM激发态分子动力学模拟,在原子水平上研究了可逆光开关荧光蛋白asFP595的光开关机制。我们的模拟解释了测量得到的量子产率和激发态寿命,还预测了迄今未知的中间体以及不可逆荧光态的结构。此外,我们发现asFP595活性位点中的质子分布控制着蛋白质基质中发色团的光化学转化途径。相应地,发色团和一些近端氨基酸质子化状态的变化会导致不同的光化学状态,而这些状态对于光开关机制而言都是必不可少的。这些光化学状态包括:(i)一种中性发色团,它可以进行反式 - 顺式光异构化;(ii)一种阴离子发色团,激发后会迅速经历无辐射衰变;(iii)一种假定的荧光两性离子发色团。不同质子化状态的整体稳定性由发色团的异构状态控制。我们最终提出,辐射诱导的谷氨酸Glu215脱羧作用会阻断使两性离子发色团失活的质子转移途径,从而导致不可逆荧光。我们已经确定光开关蛋白中反式 - 顺式异构化与质子转移的紧密耦合对其功能至关重要,并提出了一个详细的潜在机制,该机制提供了一个全面的图景来解释现有的实验数据。asFP595与其他用于成像的感兴趣的荧光蛋白之间的结构相似性表明,这种耦合是光开关蛋白相当普遍的机制。这些见解可以指导光开关蛋白的合理设计和优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ec1/2274881/a88727364053/pcbi.1000034.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验