Suppr超能文献

光致变色荧光蛋白 Padron 光驱动开关的分子基础。

Molecular basis of the light-driven switching of the photochromic fluorescent protein Padron.

机构信息

Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.

出版信息

J Biol Chem. 2010 May 7;285(19):14603-9. doi: 10.1074/jbc.M109.086314. Epub 2010 Mar 16.

Abstract

Reversibly switchable fluorescent proteins can be repeatedly photoswitched between a fluorescent and a nonfluorescent state by irradiation with the light of two different wavelengths. The molecular basis of the switching process remains a controversial topic. Padron0.9 is a reversibly switchable fluorescent protein with "positive" switching characteristics, exhibiting excellent spectroscopic properties. Its chromophore is formed by the amino acids Cys-Tyr-Gly. We obtained high resolution x-ray structures of Padron0.9 in both the fluorescent and the nonfluorescent states and used the structural information for molecular dynamics simulations. We found that in Padron0.9 the chromophore undergoes a cis-trans isomerization upon photoswitching. The molecular dynamics simulations clarified the protonation states of the amino acid residues within the chromophore pocket that influence the protonation state of the chromophore. We conclude that a light driven cis-trans isomerization of the chromophore appears to be the fundamental switching mechanism in all photochromic fluorescent proteins known to date. Distinct absorption cross-sections for the switching wavelengths in the fluorescent and the nonfluorescent state are not essential for efficient photochromism in fluorescent proteins, although they may facilitate the switching process.

摘要

可反复切换的荧光蛋白可以通过两种不同波长的光照射在荧光和非荧光状态之间反复切换。切换过程的分子基础仍然是一个有争议的话题。Padron0.9 是一种具有“正”切换特性的可反复切换的荧光蛋白,具有优异的光谱特性。其发色团由半胱氨酸-酪氨酸-甘氨酸氨基酸组成。我们获得了 Padron0.9 在荧光和非荧光状态下的高分辨率 X 射线结构,并利用结构信息进行了分子动力学模拟。我们发现,在 Padron0.9 中,发色团在光开关时经历顺反异构化。分子动力学模拟澄清了影响发色团质子化状态的发色团口袋内氨基酸残基的质子化状态。我们的结论是,在迄今为止已知的所有光致变色荧光蛋白中,发色团的光驱动顺反异构似乎是基本的开关机制。在荧光和非荧光状态下的切换波长的不同吸收截面对于荧光蛋白的高效光致变色并非必需,尽管它们可能有助于切换过程。

相似文献

1
Molecular basis of the light-driven switching of the photochromic fluorescent protein Padron.
J Biol Chem. 2010 May 7;285(19):14603-9. doi: 10.1074/jbc.M109.086314. Epub 2010 Mar 16.
2
Chromophore protonation state controls photoswitching of the fluoroprotein asFP595.
PLoS Comput Biol. 2008 Mar 21;4(3):e1000034. doi: 10.1371/journal.pcbi.1000034.
3
Structural basis for reversible photoswitching in Dronpa.
Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13005-9. doi: 10.1073/pnas.0700629104. Epub 2007 Jul 23.
4
Low-temperature chromophore isomerization reveals the photoswitching mechanism of the fluorescent protein Padron.
J Am Chem Soc. 2011 Oct 19;133(41):16362-5. doi: 10.1021/ja207001y. Epub 2011 Sep 22.
6
Excited state dynamics of photoswitchable fluorescent protein Padron.
J Phys Chem B. 2013 Dec 27;117(51):16422-7. doi: 10.1021/jp409654f. Epub 2013 Dec 13.
7
Structural evidence for a two-regime photobleaching mechanism in a reversibly switchable fluorescent protein.
J Am Chem Soc. 2013 Oct 23;135(42):15841-50. doi: 10.1021/ja406860e. Epub 2013 Oct 7.
8
A structural basis for reversible photoswitching of absorbance spectra in red fluorescent protein rsTagRFP.
J Mol Biol. 2012 Mar 30;417(3):144-51. doi: 10.1016/j.jmb.2012.01.044. Epub 2012 Jan 30.
9
Structure and mechanism of the reversible photoswitch of a fluorescent protein.
Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13070-4. doi: 10.1073/pnas.0502772102. Epub 2005 Aug 31.

引用本文的文献

4
Photoswitchable Fluorescent Proteins: Mechanisms on Ultrafast Timescales.
Int J Mol Sci. 2022 Jun 9;23(12):6459. doi: 10.3390/ijms23126459.
9
Quantitative Model for Reversibly Photoswitchable Sensors.
ACS Sens. 2021 Mar 26;6(3):1157-1165. doi: 10.1021/acssensors.0c02414. Epub 2021 Feb 10.
10
A photoswitchable fluorescent protein for hours-time-lapse and sub-second-resolved super-resolution imaging.
Microscopy (Oxf). 2021 Aug 9;70(4):340-352. doi: 10.1093/jmicro/dfab001.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging.
Trends Cell Biol. 2009 Nov;19(11):555-65. doi: 10.1016/j.tcb.2009.09.003.
4
The fluorescent protein palette: tools for cellular imaging.
Chem Soc Rev. 2009 Oct;38(10):2887-921. doi: 10.1039/b901966a. Epub 2009 Aug 4.
5
The structure and function of fluorescent proteins.
Chem Soc Rev. 2009 Oct;38(10):2852-64. doi: 10.1039/b913033k. Epub 2009 Aug 21.
6
Structure, dynamics and optical properties of fluorescent proteins: perspectives for marker development.
Chemphyschem. 2009 Jul 13;10(9-10):1369-79. doi: 10.1002/cphc.200800839.
7
Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations.
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18343-8. doi: 10.1073/pnas.0805949105. Epub 2008 Nov 18.
8
Fluorescent probes for super-resolution imaging in living cells.
Nat Rev Mol Cell Biol. 2008 Dec;9(12):929-43. doi: 10.1038/nrm2531. Epub 2008 Nov 12.
10
Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy.
Biophys J. 2008 Sep 15;95(6):2989-97. doi: 10.1529/biophysj.108.130146. Epub 2008 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验