Suppr超能文献

从异构数据预测基因的癌症相关性。

Predicting cancer involvement of genes from heterogeneous data.

作者信息

Aragues Ramon, Sander Chris, Oliva Baldo

机构信息

Structural Bioinformatics Lab, (GRIB), Universitat Pompeu Fabra-IMIM, Barcelona Research Park of Biomedicine (PRBB), 08003-Barcelona, Catalonia, Spain.

出版信息

BMC Bioinformatics. 2008 Mar 27;9:172. doi: 10.1186/1471-2105-9-172.

Abstract

BACKGROUND

Systematic approaches for identifying proteins involved in different types of cancer are needed. Experimental techniques such as microarrays are being used to characterize cancer, but validating their results can be a laborious task. Computational approaches are used to prioritize between genes putatively involved in cancer, usually based on further analyzing experimental data.

RESULTS

We implemented a systematic method using the PIANA software that predicts cancer involvement of genes by integrating heterogeneous datasets. Specifically, we produced lists of genes likely to be involved in cancer by relying on: (i) protein-protein interactions; (ii) differential expression data; and (iii) structural and functional properties of cancer genes. The integrative approach that combines multiple sources of data obtained positive predictive values ranging from 23% (on a list of 811 genes) to 73% (on a list of 22 genes), outperforming the use of any of the data sources alone. We analyze a list of 20 cancer gene predictions, finding that most of them have been recently linked to cancer in literature.

CONCLUSION

Our approach to identifying and prioritizing candidate cancer genes can be used to produce lists of genes likely to be involved in cancer. Our results suggest that differential expression studies yielding high numbers of candidate cancer genes can be filtered using protein interaction networks.

摘要

背景

需要有系统的方法来识别参与不同类型癌症的蛋白质。诸如微阵列等实验技术正被用于表征癌症,但验证其结果可能是一项艰巨的任务。计算方法通常基于对实验数据的进一步分析,用于在假定参与癌症的基因之间进行优先级排序。

结果

我们使用PIANA软件实施了一种系统方法,通过整合异构数据集来预测基因与癌症的关联。具体而言,我们通过依赖以下方面生成可能参与癌症的基因列表:(i)蛋白质-蛋白质相互作用;(ii)差异表达数据;以及(iii)癌症基因的结构和功能特性。结合多种数据来源的综合方法获得的阳性预测值范围从23%(在811个基因的列表上)到73%(在22个基因的列表上),优于单独使用任何一种数据来源。我们分析了一份包含20个癌症基因预测的列表,发现其中大多数最近在文献中已与癌症相关联。

结论

我们识别候选癌症基因并对其进行优先级排序的方法可用于生成可能参与癌症的基因列表。我们的结果表明,可使用蛋白质相互作用网络对产生大量候选癌症基因的差异表达研究结果进行筛选。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2181/2330045/757c9635f97a/1471-2105-9-172-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验