Suppr超能文献

基于基因互作正则化弹性网络的癌症进展预测。

Cancer Progression Prediction Using Gene Interaction Regularized Elastic Net.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2017 Jan-Feb;14(1):145-154. doi: 10.1109/TCBB.2015.2511758. Epub 2015 Dec 23.

Abstract

Different types of genomic aberration may simultaneously contribute to tumorigenesis. To obtain a more accurate prognostic assessment to guide therapeutic regimen choice for cancer patients, the heterogeneous multi-omics data should be integrated harmoniously, which can often be difficult. For this purpose, we propose a Gene Interaction Regularized Elastic Net (GIREN) model that predicts clinical outcome by integrating multiple data types. GIREN conveniently embraces both gene measurements and gene-gene interaction information under an elastic net formulation, enforcing structure sparsity, and the "grouping effect" in solution to select the discriminate features with prognostic value. An iterative gradient descent algorithm is also developed to solve the model with regularized optimization. GIREN was applied to human ovarian cancer and breast cancer datasets obtained from The Cancer Genome Atlas, respectively. Result shows that, the proposed GIREN algorithm obtained more accurate and robust performance over competing algorithms (LASSO, Elastic Net, and Semi-supervised PCA, with or without average pathway expression features) in predicting cancer progression on both two datasets in terms of median area under curve (AUC) and interquartile range (IQR), suggesting a promising direction for more effective integration of gene measurement and gene interaction information.

摘要

不同类型的基因组异常可能同时促成肿瘤的发生。为了更准确地评估预后,从而指导癌症患者的治疗方案选择,需要将异质的多组学数据进行和谐地整合,但这往往颇具难度。为此,我们提出了一种基因互作正则化弹性网络(GIREN)模型,该模型通过整合多种数据类型来预测临床结局。GIREN 方便地在弹性网络公式下纳入了基因测量值和基因-基因互作信息,从而强制实施结构稀疏性,并在求解过程中产生“分组效应”,以选择具有预后价值的判别特征。我们还开发了一种迭代梯度下降算法来对正则化优化后的模型进行求解。我们将所提出的 GIREN 算法分别应用于从癌症基因组图谱(TCGA)获取的人类卵巢癌和乳腺癌数据集,结果表明,与竞争算法(LASSO、弹性网络和半监督 PCA,是否带有平均通路表达特征)相比,该算法在预测两种数据集中的癌症进展方面具有更准确和稳健的性能,表现在中位数曲线下面积(AUC)和四分位间距(IQR)方面,这为更有效地整合基因测量值和基因互作信息提供了一个很有前景的方向。

相似文献

1
Cancer Progression Prediction Using Gene Interaction Regularized Elastic Net.基于基因互作正则化弹性网络的癌症进展预测。
IEEE/ACM Trans Comput Biol Bioinform. 2017 Jan-Feb;14(1):145-154. doi: 10.1109/TCBB.2015.2511758. Epub 2015 Dec 23.

引用本文的文献

6
The Emerging Potential for Network Analysis to Inform Precision Cancer Medicine.网络分析在精准肿瘤医学中的新兴应用潜力
J Mol Biol. 2018 Sep 14;430(18 Pt A):2875-2899. doi: 10.1016/j.jmb.2018.06.016. Epub 2018 Jun 15.

本文引用的文献

8
Network information improves cancer outcome prediction.网络信息可改善癌症预后预测。
Brief Bioinform. 2014 Jul;15(4):612-25. doi: 10.1093/bib/bbs083. Epub 2012 Dec 18.
9
Gene Ontology annotations and resources.基因本体论注释和资源。
Nucleic Acids Res. 2013 Jan;41(Database issue):D530-5. doi: 10.1093/nar/gks1050. Epub 2012 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验