Agüí L, Peña-Farfal C, Yáñez-Sedeño P, Pingarrón J M
Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid, Spain.
Talanta. 2007 Dec 15;74(3):412-20. doi: 10.1016/j.talanta.2007.05.035. Epub 2007 May 26.
The construction of a colloidal gold-cysteamine-carbon paste electrode, Au(coll)-Cyst-CPE, for the electrochemical determination of homocysteine is reported. The improved voltammetric behaviour of homocysteine at Au(coll)-Cyst-CPE with respect to that observed at a gold disk electrode is attributed to an enhanced electron transfer kinetics as a consequence of the array distribution of gold nanoparticles immobilized onto the Cyst SAM. Cyclic voltammetry of homocysteine showed an adsorption-controlled current for scan rates between 500 and 5000 mV s(-1). The hydrodynamic voltammogram constructed for homocysteine allowed the selection of a potential value of +600 mV, where the background current is negligible, for the amperometric detection of the analyte at the Au(coll)-Cyst-CPE. Using a flow rate of 0.8 ml min(-1), the R.S.D. value for i(p) after 25 repetitive injections of homocysteine was of 4.3%, and one single electrode could be used for more than 15 days without any treatment or regeneration procedure of the modified electrode surface. An HPLC method for the separation and quantification of homocysteine and related thiols, using amperometric detection at the modified electrode has been developed. A mobile phase consisting of 2:98% (v/v) acetonitrile:0.05 mol l(-1) buffer solution of pH 2.0, and a detection potential of +0.80 V were selected. Separation with baseline resolution and retention times of 3.00, 3.60, 4.52, 5.71 and 7.79 min were obtained for cysteine, homocysteine, glutathione, penicillamine and N-acetyl-cysteine, respectively. Calibration graphs were constructed for all the separated compounds. Detection limits ranged between 20 nM for cysteine and 120 nM for penicillamine, with a value for homocysteine of 30 nM. These values compare advantageously with those achieved with previously reported HPLC methods using electrochemical, UV, fluorescence and MS detection modes. The developed method was applied to the determination of cysteine and homocysteine serum samples with good results.
报道了一种用于电化学测定同型半胱氨酸的胶体金-半胱胺-碳糊电极(Au(coll)-Cyst-CPE)的构建。与在金盘电极上观察到的情况相比,同型半胱氨酸在Au(coll)-Cyst-CPE上伏安行为的改善归因于固定在半胱氨酸自组装单分子层(Cyst SAM)上的金纳米颗粒的阵列分布导致电子转移动力学增强。同型半胱氨酸的循环伏安法显示,在500至5000 mV s(-1)的扫描速率下,电流受吸附控制。为同型半胱氨酸构建的流体动力学伏安图允许选择+600 mV的电位值,在此电位下背景电流可忽略不计,用于在Au(coll)-Cyst-CPE上对分析物进行安培检测。使用0.8 ml min(-1)的流速,同型半胱氨酸25次重复进样后i(p)的相对标准偏差(R.S.D.)值为4.3%,并且一个单电极可在不对修饰电极表面进行任何处理或再生程序的情况下使用超过15天。已开发出一种使用修饰电极进行安培检测来分离和定量同型半胱氨酸及相关硫醇的高效液相色谱(HPLC)方法。选择由2:98%(v/v)乙腈:0.05 mol l(-1) pH 2.0的缓冲溶液组成的流动相以及+0.80 V的检测电位。半胱氨酸、同型半胱氨酸、谷胱甘肽、青霉胺和N-乙酰半胱氨酸分别以基线分离和3.00、3.60、4.52、5.71和7.79 min的保留时间获得分离。为所有分离的化合物构建了校准曲线。检测限范围为半胱氨酸20 nM至青霉胺120 nM,同型半胱氨酸的值为30 nM。这些值与先前报道的使用电化学、紫外、荧光和质谱检测模式的HPLC方法所获得的值相比具有优势。所开发的方法应用于血清样品中半胱氨酸和同型半胱氨酸的测定,结果良好。