Brown Abigail M, Baucum Anthony J, Bass Martha A, Colbran Roger J
Department of Molecular Physiology and Biophysics, Center for Molecular Neuroscience, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA.
J Biol Chem. 2008 May 23;283(21):14286-94. doi: 10.1074/jbc.M801377200. Epub 2008 Mar 26.
Sustained nigrostriatal dopamine depletion increases the serine/threonine phosphorylation of multiple striatal proteins that play a role in corticostriatal synaptic plasticity, including Thr(286) phosphorylation of calcium/calmodulin-dependent protein kinase IIalpha (CaMKIIalpha). Mechanisms underlying these changes are unclear, but protein phosphatases play a critical role in the acute modulation of striatal protein phosphorylation. Here we show that dopamine depletion for periods ranging from 3 weeks to 10 months significantly reduces the total activity of protein phosphatase (PP) 1, but not of PP2A, in whole lysates of rat striatum, as measured using multiple substrates, including Thr(286)-autophosphorylated CaMKIIalpha. Striatal PP1 activity is partially inhibited by a fragment of the PP1-binding protein neurabin-I, Nb-(146-493), because of the selective inhibition of the PP1gamma(1) isoform. The fraction of PP1 activity that is insensitive to Nb-(146-493) was unaffected by dopamine depletion, demonstrating that dopamine depletion specifically reduces the activity of PP1 isoforms that are sensitive to Nb-(146-493) (i.e. PP1gamma(1)). However, total striatal levels of PP1gamma(1) or any other PP1 isoform were unaffected by dopamine depletion, and our previous studies showed that total levels of the PP1 regulatory/targeting proteins DARPP-32, spinophilin, and neurabin were also unchanged. Rather, co-immunoprecipitation experiments demonstrated that dopamine depletion increases the association of PP1gamma(1) with spinophilin in striatal extracts. In combination, these data demonstrate that striatal dopamine depletion inhibits a specific synaptic phosphatase by increasing PP1gamma(1) interaction with spinophilin, perhaps contributing to hyperphosphorylation of synaptic proteins and disruptions of synaptic plasticity and/or dendritic morphology.
黑质纹状体多巴胺持续耗竭会增加多种纹状体蛋白的丝氨酸/苏氨酸磷酸化,这些蛋白在皮质纹状体突触可塑性中发挥作用,包括钙/钙调蛋白依赖性蛋白激酶IIα(CaMKIIα)的苏氨酸(286)磷酸化。这些变化背后的机制尚不清楚,但蛋白磷酸酶在纹状体蛋白磷酸化的急性调节中起关键作用。在这里我们表明,使用包括苏氨酸(286)-自磷酸化CaMKIIα在内的多种底物测量,大鼠纹状体全细胞裂解物中,多巴胺耗竭3周至10个月会显著降低蛋白磷酸酶(PP)1的总活性,但不会降低PP2A的总活性。PP1结合蛋白神经介素-I的片段Nb-(146 - 493)会部分抑制纹状体PP1活性,这是由于对PP1γ(1)亚型的选择性抑制。对Nb-(146 - 493)不敏感的PP1活性部分不受多巴胺耗竭的影响,这表明多巴胺耗竭特异性降低了对Nb-(146 - 493)敏感的PP1亚型(即PP1γ(1))的活性。然而,PP1γ(1)或任何其他PP1亚型的纹状体总水平不受多巴胺耗竭的影响,并且我们之前的研究表明PP1调节/靶向蛋白DARPP - 32、亲嗜素和神经介素的总水平也没有变化。相反,免疫共沉淀实验表明,多巴胺耗竭会增加纹状体提取物中PP1γ(1)与亲嗜素的结合。综合来看,这些数据表明纹状体多巴胺耗竭通过增加PP1γ(1)与亲嗜素的相互作用来抑制一种特定的突触磷酸酶,这可能导致突触蛋白的过度磷酸化以及突触可塑性和/或树突形态的破坏。