Suppr超能文献

靶向代谢组学的生物信息学分析——揭示药物治疗下糖尿病小鼠的新老故事

Bioinformatics analysis of targeted metabolomics--uncovering old and new tales of diabetic mice under medication.

作者信息

Altmaier Elisabeth, Ramsay Steven L, Graber Armin, Mewes Hans-Werner, Weinberger Klaus M, Suhre Karsten

机构信息

Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, Neuherberg, Germany.

出版信息

Endocrinology. 2008 Jul;149(7):3478-89. doi: 10.1210/en.2007-1747. Epub 2008 Mar 27.

Abstract

Metabolomics is a powerful tool for identifying both known and new disease-related perturbations in metabolic pathways. In preclinical drug testing, it has a high potential for early identification of drug off-target effects. Recent advances in high-precision high-throughput mass spectrometry have brought the metabolomic field to a point where quantitative, targeted, metabolomic measurements with ready-to-use kits allow for the automated in-house screening for hundreds of different metabolites in large sets of biological samples. Today, the field of metabolomics is, arguably, at a point where transcriptomics was about 5 yr ago. This being so, the field has a strong need for adapted bioinformatics tools and methods. In this paper we describe a systematic analysis of a targeted quantitative characterization of more than 800 metabolites in blood plasma samples from healthy and diabetic mice under rosiglitazone treatment. We show that known and new metabolic phenotypes of diabetes and medication can be recovered in a statistically objective manner. We find that concentrations of methylglutaryl carnitine are oppositely impacted by rosiglitazone treatment of both healthy and diabetic mice. Analyzing ratios between metabolite concentrations dramatically reduces the noise in the data set, allowing for the discovery of new potential biomarkers of diabetes, such as the N-hydroxyacyloylsphingosyl-phosphocholines SM(OH)28:0 and SM(OH)26:0. Using a hierarchical clustering technique on partial eta(2) values, we identify functionally related groups of metabolites, indicating a diabetes-related shift from lysophosphatidylcholine to phosphatidylcholine levels. The bioinformatics data analysis approach introduced here can be readily generalized to other drug testing scenarios and other medical disorders.

摘要

代谢组学是一种强大的工具,可用于识别代谢途径中已知和新的疾病相关扰动。在临床前药物测试中,它在早期识别药物脱靶效应方面具有很高的潜力。高精度高通量质谱技术的最新进展使代谢组学领域发展到了一个阶段,即使用即用型试剂盒进行定量、靶向代谢组学测量,可以对大量生物样本中的数百种不同代谢物进行自动化的内部筛选。如今,代谢组学领域可以说正处于大约5年前转录组学的阶段。正因如此,该领域迫切需要适用的生物信息学工具和方法。在本文中,我们描述了对罗格列酮治疗下健康小鼠和糖尿病小鼠血浆样本中800多种代谢物进行靶向定量表征的系统分析。我们表明,糖尿病和药物治疗的已知和新的代谢表型可以通过统计学客观的方式得以恢复。我们发现,罗格列酮治疗对健康小鼠和糖尿病小鼠的甲基戊二酰肉碱浓度有相反的影响。分析代谢物浓度之间的比率可显著降低数据集中的噪声,从而发现糖尿病的新潜在生物标志物,如N-羟基酰基鞘氨醇磷酸胆碱SM(OH)28:0和SM(OH)26:0。使用基于偏η²值的层次聚类技术,我们识别出功能相关的代谢物组,表明糖尿病相关的从溶血磷脂酰胆碱到磷脂酰胆碱水平的转变。本文介绍的生物信息学数据分析方法可以很容易地推广到其他药物测试场景和其他医学疾病。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验