Nandi Manasi, Kelly Peter, Vallance Patrick, Leiper James
Centre for Clinical Pharmacology, Division of Medicine, University College London, London, UK.
Vasc Med. 2008 Feb;13(1):29-36. doi: 10.1177/1358863X07085916.
GTP-cyclohydrolase 1 (GTP-CH1) catalyses the first and rate-limiting step for the de novo production of tetrahydrobiopterin (BH(4)), an essential cofactor for nitric oxide synthase (NOS). The GTP-CH1-BH(4) pathway is emerging as an important regulator in a number of pathologies associated with over-production of nitric oxide (NO) and hence a more detailed understanding of this pathway may lead to novel therapeutic targets for the treatment of certain vascular diseases. GTP-CH1 activity can be inhibited by BH(4) through its protein-protein interactions with GTP-CH1 regulatory protein (GFRP), and transcriptional and post-translational modification of both GTP-CH1 and GFRP have been reported in response to proinflammatory stimuli. However, the functional significance of GFRP/GTP-CH1 interactions on NO pathways has not yet been demonstrated. We aimed to investigate whether over-expression of GFRP could affect NO production in living cells. Over-expression of N-terminally Myc-tagged recombinant human GFRP in the murine endothelial cell line sEnd 1 resulted in no significant effect on basal BH(4) nor NO levels but significantly attenuated the rise in BH(4) and NO observed following lipopolysaccharide and cytokine stimulation of cells. This study demonstrates that GFRP can play a direct regulatory role in iNOS-mediated NO synthesis and suggests that the allosteric regulation of GTP-CH1 activity by GFRP may be an important mechanism regulating BH(4) and NO levels in vivo.
鸟苷三磷酸环化水解酶1(GTP-CH1)催化四氢生物蝶呤(BH(4))从头合成的第一步及限速步骤,BH(4)是一氧化氮合酶(NOS)的一种必需辅因子。GTP-CH1-BH(4)途径正成为许多与一氧化氮(NO)过量产生相关病理过程中的重要调节因子,因此更详细地了解该途径可能会为某些血管疾病的治疗带来新的治疗靶点。BH(4)可通过与GTP-CH1调节蛋白(GFRP)的蛋白质-蛋白质相互作用抑制GTP-CH1活性,并且已经报道了在促炎刺激下GTP-CH1和GFRP的转录及翻译后修饰。然而,GFRP/GTP-CH1相互作用对NO途径的功能意义尚未得到证实。我们旨在研究GFRP的过表达是否会影响活细胞中NO的产生。在小鼠内皮细胞系sEnd 1中过表达N端带有Myc标签的重组人GFRP,对基础BH(4)水平和NO水平均无显著影响,但显著减弱了细胞经脂多糖和细胞因子刺激后观察到的BH(4)和NO的升高。本研究表明,GFRP可在诱导型一氧化氮合酶介导的NO合成中发挥直接调节作用,并提示GFRP对GTP-CH1活性的变构调节可能是体内调节BH(4)和NO水平的重要机制。