Division of Cardiology, Emory University School of Medicine, 1639 Pierce Dr WMBR 319, Atlanta, GA 30322, USA.
Circ Res. 2010 Feb 5;106(2):328-36. doi: 10.1161/CIRCRESAHA.109.210658. Epub 2009 Nov 19.
GTP cyclohydrolase I (GTPCH-1) is the rate-limiting enzyme involved in de novo biosynthesis of tetrahydrobiopterin (BH(4)), an essential cofactor for NO synthases and aromatic amino acid hydroxylases. GTPCH-1 undergoes negative feedback regulation by its end-product BH(4) via interaction with the GTP cyclohydrolase feedback regulatory protein (GFRP). Such a negative feedback mechanism should maintain cellular BH(4) levels within a very narrow range; however, we recently identified a phosphorylation site (S81) on human GTPCH-1 that markedly increases BH(4) production in response to laminar shear.
We sought to define how S81 phosphorylation alters GTPCH-1 enzyme activity and how this is modulated by GFRP.
Using prokaryotically expressed proteins, we found that the GTPCH-1 phospho-mimetic mutant (S81D) has increased enzyme activity, reduced binding to GFRP and resistance to inhibition by GFRP compared to wild-type GTPCH-1. Using small interfering RNA or overexpressing plasmids, GFRP was shown to modulate phosphorylation of GTPCH-1, BH(4) levels, and NO production in human endothelial cells. Laminar, but not oscillatory shear stress, caused dissociation of GTPCH-1 and GFRP, promoting GTPCH-1 phosphorylation. We also found that both GTPCH-1 phosphorylation and GFRP downregulation prevents endothelial NO synthase uncoupling in response to oscillatory shear. Finally oscillatory shear was associated with impaired GTPCH-1 phosphorylation and reduced BH(4) levels in vivo.
These studies provide a new mechanism for regulation of endothelial GTPCH-1 by its phosphorylation and interplay with GFRP. This mechanism allows for escape from GFRP negative feedback and permits large amounts of BH(4) to be produced in response to laminar shear stress.
GTP 环化水解酶 1(GTPCH-1)是从头合成四氢生物蝶呤(BH4)的限速酶,BH4 是一氧化氮合酶和芳香族氨基酸羟化酶的必需辅因子。GTPCH-1 可通过与 GTP 环化水解酶反馈调节蛋白(GFRP)相互作用,受到其终产物 BH4 的负反馈调节。这种负反馈机制应该将细胞内 BH4 水平维持在非常窄的范围内;然而,我们最近在人类 GTPCH-1 上鉴定出一个磷酸化位点(S81),该位点在应对层流剪切时显著增加 BH4 的产生。
我们试图确定 S81 磷酸化如何改变 GTPCH-1 酶活性,以及 GFRP 如何对此进行调节。
使用原核表达的蛋白质,我们发现 GTPCH-1 磷酸模拟突变体(S81D)的酶活性增加,与野生型 GTPCH-1 相比,与 GFRP 的结合减少,并且对 GFRP 的抑制作用具有抗性。使用小干扰 RNA 或过表达质粒,证明 GFRP 可调节人内皮细胞中 GTPCH-1 的磷酸化、BH4 水平和 NO 产生。层流剪切,而不是振荡剪切,导致 GTPCH-1 和 GFRP 分离,促进 GTPCH-1 磷酸化。我们还发现,GTPCH-1 磷酸化和 GFRP 下调均可防止内皮型一氧化氮合酶在应对振荡剪切时脱偶联。最后,体内的振荡剪切与 GTPCH-1 磷酸化受损和 BH4 水平降低有关。
这些研究为内皮细胞 GTPCH-1 的磷酸化及其与 GFRP 的相互作用提供了一种新的调节机制。这种机制允许从 GFRP 的负反馈中逃脱,并允许在应对层流剪切应力时产生大量的 BH4。