Bentham Jamie, Bhattacharya Shoumo
Department of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX37BN, UK.
Ann N Y Acad Sci. 2008 Mar;1123:10-9. doi: 10.1196/annals.1420.003.
Congenital heart disease (CHD) is a major cause of childhood morbidity and death in the West; the incidence is approximately 1 in 145 live births. Mendelian and chromosomal syndromes account for approximately 20% of CHD. The genetic mechanisms underlying non-chromosomal or non-Mendelian "sporadic" CHD, which account for the remaining 80%, are poorly understood. The genetic architecture of sporadic CHD likely includes accumulation of rare nonsynonymous variants in cardiac developmental genes leading to mutational loading of cardiac developmental networks, copy number variation in cardiac developmental genes, and common variants that may not be obviously linked to cardiac development but may alter genetic buffering pathways (e.g., folate metabolism). The rare mutations typically associated with sporadic CHD likely arise from the severe decrease in reproductive fitness selecting against any CHD-causing gene variant. The resulting allelic heterogeneity reduces the power of genome-wide association studies for CHD. A complementary approach to the genetic analysis of CHD is to resequence candidate genes that have been shown to be necessary for mouse heart development. The number of such genes likely exceeds 1700. To identify these genes, we have developed an enabling technology (high-throughput magnetic resonance imaging of mouse embryos), which is used in combination with N-ethyl-N-nitrosourea/transposon mutagenesis and knockout techniques. Key future challenges now involve translating discoveries made in mouse models to human CHD genetics and understanding the mechanisms that create and disrupt genetic buffering. A long-term goal in CHD is to manipulate these pathways to enhance buffering and prevent disease in a manner analogous to the use of folate in preventing neural tube defects.
先天性心脏病(CHD)是西方儿童发病和死亡的主要原因;发病率约为每145例活产中有1例。孟德尔和染色体综合征约占CHD的20%。对于占其余80%的非染色体或非孟德尔“散发性”CHD的遗传机制,人们了解甚少。散发性CHD的遗传结构可能包括心脏发育基因中罕见的非同义变异的积累,导致心脏发育网络的突变负荷、心脏发育基因中的拷贝数变异,以及可能与心脏发育无明显关联但可能改变遗传缓冲途径(如叶酸代谢)的常见变异。通常与散发性CHD相关的罕见突变可能源于针对任何导致CHD的基因变异的生殖适应性的严重下降。由此产生的等位基因异质性降低了全基因组关联研究对CHD的效力。CHD遗传分析的一种补充方法是对已证明对小鼠心脏发育必不可少的候选基因进行重新测序。这类基因的数量可能超过1700个。为了识别这些基因,我们开发了一种支持技术(小鼠胚胎的高通量磁共振成像),该技术与N-乙基-N-亚硝基脲/转座子诱变和基因敲除技术结合使用。现在,未来的关键挑战包括将在小鼠模型中取得的发现转化为人类CHD遗传学,并理解产生和破坏遗传缓冲的机制。CHD的一个长期目标是以类似于使用叶酸预防神经管缺陷的方式操纵这些途径,以增强缓冲并预防疾病。