Suppr超能文献

用于研究斑马鱼游泳个体发育的自动视觉跟踪

Automated visual tracking for studying the ontogeny of zebrafish swimming.

作者信息

Fontaine Ebraheem, Lentink David, Kranenbarg Sander, Müller Ulrike K, van Leeuwen Johan L, Barr Alan H, Burdick Joel W

机构信息

Mechanical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

J Exp Biol. 2008 Apr;211(Pt 8):1305-16. doi: 10.1242/jeb.010272.

Abstract

The zebrafish Danio rerio is a widely used model organism in studies of genetics, developmental biology, and recently, biomechanics. In order to quantify changes in swimming during all stages of development, we have developed a visual tracking system that estimates the posture of fish. Our current approach assumes planar motion of the fish, given image sequences taken from a top view. An accurate geometric fish model is automatically designed and fit to the images at each time frame. Our approach works across a range of fish shapes and sizes and is therefore well suited for studying the ontogeny of fish swimming, while also being robust to common environmental occlusions. Our current analysis focuses on measuring the influence of vertebra development on the swimming capabilities of zebrafish. We examine wild-type zebrafish and mutants with stiff vertebrae (stocksteif) and quantify their body kinematics as a function of their development from larvae to adult (mutants made available by the Hubrecht laboratory, The Netherlands). By tracking the fish, we are able to measure the curvature and net acceleration along the body that result from the fish's body wave. Here, we demonstrate the capabilities of the tracking system for the escape response of wild-type zebrafish and stocksteif mutant zebrafish. The response was filmed with a digital high-speed camera at 1500 frames s(-1). Our approach enables biomechanists and ethologists to process much larger datasets than possible at present. Our automated tracking scheme can therefore accelerate insight in the swimming behavior of many species of (developing) fish.

摘要

斑马鱼(Danio rerio)是遗传学、发育生物学以及最近生物力学研究中广泛使用的模式生物。为了量化发育各阶段游泳行为的变化,我们开发了一种视觉跟踪系统来估计鱼的姿态。我们当前的方法假设鱼的运动为平面运动,图像序列是从俯视角度拍摄的。在每个时间帧,一个精确的几何鱼模型会自动设计并拟合到图像上。我们的方法适用于各种形状和大小的鱼,因此非常适合研究鱼类游泳的个体发育,同时对常见的环境遮挡也具有鲁棒性。我们当前的分析重点是测量脊椎发育对斑马鱼游泳能力的影响。我们研究野生型斑马鱼和脊椎僵硬的突变体(stocksteif),并量化它们从幼体到成体发育过程中的身体运动学特征(突变体由荷兰Hubrecht实验室提供)。通过跟踪鱼,我们能够测量鱼体波引起的身体曲率和净加速度。在此,我们展示了跟踪系统对野生型斑马鱼和stocksteif突变体斑马鱼逃避反应的跟踪能力。该反应由数字高速摄像机以1500帧/秒的速度拍摄。我们的方法使生物力学家和动物行为学家能够处理比目前可能处理的大得多的数据集。因此,我们的自动跟踪方案可以加快对许多(发育中的)鱼类游泳行为的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验