Rho Sangchul, You Sungyong, Kim Yongsoo, Hwang Daehee
School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea.
BMB Rep. 2008 Mar 31;41(3):184-93. doi: 10.5483/bmbrep.2008.41.3.184.
Living organisms are comprised of various systems at different levels, i.e., organs, tissues, and cells. Each system carries out its diverse functions in response to environmental and genetic perturbations, by utilizing biological networks, in which nodal components, such as, DNA, mRNAs, proteins, and metabolites, closely interact with each other. Systems biology investigates such systems by producing comprehensive global data that represent different levels of biological information, i.e., at the DNA, mRNA, protein, or metabolite levels, and by integrating this data into network models that generate coherent hypotheses for given biological situations. This review presents a systems biology framework, called the 'Integrative Proteomics Data Analysis Pipeline' (IPDAP), which generates mechanistic hypotheses from network models reconstructed by integrating diverse types of proteomic data generated by mass spectrometry-based proteomic analyses. The devised framework includes a serial set of computational and network analysis tools. Here, we demonstrate its functionalities by applying these tools to several conceptual examples.
生物体由不同层次的各种系统组成,即器官、组织和细胞。每个系统通过利用生物网络来响应环境和基因扰动,执行其多样的功能,在这些生物网络中,诸如DNA、mRNA、蛋白质和代谢物等节点成分彼此紧密相互作用。系统生物学通过产生代表不同层次生物信息(即DNA、mRNA、蛋白质或代谢物水平)的全面全局数据,并将这些数据整合到能针对特定生物情况生成连贯假设的网络模型中,来研究此类系统。本综述提出了一个名为“综合蛋白质组学数据分析流程”(IPDAP)的系统生物学框架,该框架从通过整合基于质谱的蛋白质组学分析产生的不同类型蛋白质组学数据重建的网络模型中生成机制假设。所设计的框架包括一系列连续的计算和网络分析工具。在这里,我们通过将这些工具应用于几个概念性示例来展示其功能。