Buettner Falk F R, Bendallah Ibrahim M, Bosse Janine T, Dreckmann Karla, Nash John H E, Langford Paul R, Gerlach Gerald-F
Department of Infectious Diseases, Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany.
Infect Immun. 2008 Jun;76(6):2284-95. doi: 10.1128/IAI.01540-07. Epub 2008 Mar 31.
The ability of the bacterial pathogen Actinobacillus pleuropneumoniae to grow anaerobically allows the bacterium to persist in the lung. The ArcAB two-component system is crucial for metabolic adaptation in response to anaerobic conditions, and we recently showed that an A. pleuropneumoniae arcA mutant had reduced virulence compared to the wild type (F. F. Buettner, A. Maas, and G.-F. Gerlach, Vet. Microbiol. 127:106-115, 2008). In order to understand the attenuated phenotype, we investigated the ArcA regulon of A. pleuropneumoniae by using a combination of transcriptome (microarray) and proteome (two-dimensional difference gel electrophoresis and subsequent mass spectrometry) analyses. We show that ArcA negatively regulates the expression of many genes, including those encoding enzymes which consume intermediates during fumarate synthesis. Simultaneously, the expression of glycerol-3-phosphate dehydrogenase, a component of the respiratory chain serving as a direct reduction equivalent for fumarate reductase, was upregulated. This result, together with the in silico analysis finding that A. pleuropneumoniae has no oxidative branch of the citric acid cycle, led to the hypothesis that fumarate reductase might be crucial for virulence by providing (i) energy via fumarate respiration and (ii) succinate and other essential metabolic intermediates via the reductive branch of the citric acid cycle. To test this hypothesis, an isogenic A. pleuropneumoniae fumarate reductase deletion mutant was constructed and studied by using a pig aerosol infection model. The mutant was shown to be significantly attenuated, thereby strongly supporting a crucial role for fumarate reductase in the pathogenesis of A. pleuropneumoniae infection.
细菌性病原菌胸膜肺炎放线杆菌在厌氧条件下生长的能力使其能够在肺部持续存在。ArcAB双组分系统对于响应厌氧条件的代谢适应至关重要,并且我们最近发现,与野生型相比,胸膜肺炎放线杆菌arcA突变体的毒力有所降低(F. F. Buettner、A. Maas和G.-F. Gerlach,《兽医微生物学》127:106 - 115,2008年)。为了了解这种减毒表型,我们通过结合转录组(微阵列)和蛋白质组(二维差异凝胶电泳及后续质谱分析)分析,研究了胸膜肺炎放线杆菌的ArcA调控子。我们发现ArcA负调控许多基因的表达,包括那些编码在延胡索酸合成过程中消耗中间产物的酶的基因。同时,呼吸链组分甘油 - 3 - 磷酸脱氢酶的表达上调,该酶作为延胡索酸还原酶的直接还原当量。这一结果,连同计算机分析发现胸膜肺炎放线杆菌没有柠檬酸循环的氧化分支,导致了这样一个假设,即延胡索酸还原酶可能通过以下方式对毒力至关重要:(i)通过延胡索酸呼吸提供能量,以及(ii)通过柠檬酸循环的还原分支提供琥珀酸和其他必需的代谢中间产物。为了验证这一假设,构建了胸膜肺炎放线杆菌延胡索酸还原酶同基因缺失突变体,并使用猪气溶胶感染模型进行研究。结果表明该突变体显著减毒,从而有力地支持了延胡索酸还原酶在胸膜肺炎放线杆菌感染发病机制中的关键作用。