Suppr超能文献

硝酸盐响应中的代谢适应在 NarQ/P 调控下对胸膜肺炎放线杆菌的生长和致病性至关重要。

The Metabolic Adaptation in Response to Nitrate Is Critical for Actinobacillus pleuropneumoniae Growth and Pathogenicity under the Regulation of NarQ/P.

机构信息

State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural Universitygrid.35155.37, Wuhan, Hubei, China.

Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.

出版信息

Infect Immun. 2022 Sep 15;90(9):e0023922. doi: 10.1128/iai.00239-22. Epub 2022 Aug 8.

Abstract

Nitrate metabolism is an adaptation mechanism used by many bacteria for survival in anaerobic environments. As a by-product of inflammation, nitrate is used by the intestinal bacterial pathogens to enable gut infection. However, the responses of bacterial respiratory pathogens to nitrate are less well understood. Actinobacillus pleuropneumoniae is an important bacterial respiratory pathogen of swine. Previous studies have suggested that adaptation of A. pleuropneumoniae to anaerobiosis is important for infection. In this work, A. pleuropneumoniae growth and pathogenesis in response to the nitrate were investigated. Nitrate significantly promoted A. pleuropneumoniae growth under anaerobic conditions and lethality in mice. By using and deletion mutants and single-residue-mutated complementary strains of Δ, the two-component system NarQ/P was confirmed to be critical for nitrate-induced growth, with Arg50 in NarQ as an essential functional residue. Transcriptome analysis showed that nitrate upregulated multiple energy-generating pathways, including nitrate metabolism, mannose and pentose metabolism, and glycerolipid metabolism via the regulation of NarQ/P. Furthermore, , , and its target gene encoding the nitrate reductase Nap contributed to the pathogenicity of A. pleuropneumoniae. The Nap inhibitor tungstate significantly reduced the survival of A. pleuropneumoniae , suggesting that Nap is a potential drug target. These results give new insights into how the respiratory pathogen A. pleuropneumoniae utilizes the alternative electron acceptor nitrate to overcome the hypoxia microenvironment, which can occur in the inflammatory or necrotic infected tissues.

摘要

硝酸盐代谢是许多细菌在厌氧环境中生存的一种适应机制。硝酸盐作为炎症的一种副产物,被肠道细菌病原体用于促进肠道感染。然而,细菌呼吸病原体对硝酸盐的反应机制还不太清楚。胸膜肺炎放线杆菌是一种重要的猪细菌性呼吸道病原体。先前的研究表明,胸膜肺炎放线杆菌对厌氧条件的适应对于感染很重要。在这项工作中,研究了硝酸盐对胸膜肺炎放线杆菌生长和致病力的影响。结果表明,硝酸盐在厌氧条件下显著促进了胸膜肺炎放线杆菌的生长,并显著增加了小鼠的致死率。通过使用 Δ 和 缺失突变体以及 Δ 的单一位点突变互补菌株,证实了双组分系统 NarQ/P 对于硝酸盐诱导的生长至关重要,其中 NarQ 中的 Arg50 是必需的功能残基。转录组分析表明,硝酸盐通过调控 NarQ/P 上调了多种能量产生途径,包括硝酸盐代谢、甘露糖和戊糖代谢以及甘油脂代谢。此外,NarL、Nap 和其编码硝酸盐还原酶 Nap 的靶基因也有助于胸膜肺炎放线杆菌的致病性。硝酸还原酶抑制剂钨酸盐显著降低了胸膜肺炎放线杆菌的存活率,这表明 Nap 是一个潜在的药物靶点。这些结果为呼吸病原体胸膜肺炎放线杆菌如何利用替代电子受体硝酸盐来克服缺氧微环境提供了新的见解,这种缺氧微环境可能发生在炎症或坏死的感染组织中。

相似文献

3
Analysis of the Actinobacillus pleuropneumoniae ArcA regulon identifies fumarate reductase as a determinant of virulence.
Infect Immun. 2008 Jun;76(6):2284-95. doi: 10.1128/IAI.01540-07. Epub 2008 Mar 31.
5
Identification of FtpA, a Dps-Like Protein Involved in Anti-Oxidative Stress and Virulence in Actinobacillus pleuropneumoniae.
J Bacteriol. 2022 Feb 15;204(2):e0032621. doi: 10.1128/JB.00326-21. Epub 2021 Nov 22.
6
The roles of flp1 and tadD in Actinobacillus pleuropneumoniae pilus biosynthesis and pathogenicity.
Microb Pathog. 2019 Jan;126:310-317. doi: 10.1016/j.micpath.2018.11.010. Epub 2018 Nov 10.
10
Global effects of catecholamines on Actinobacillus pleuropneumoniae gene expression.
PLoS One. 2012;7(2):e31121. doi: 10.1371/journal.pone.0031121. Epub 2012 Feb 8.

引用本文的文献

3
HemN2 Regulates the Virulence of HYS through 7-Hydroxytropolone Synthesis and Oxidative Stress.
Biology (Basel). 2024 May 24;13(6):373. doi: 10.3390/biology13060373.
4
[Effect of intestinal nitrate on growth of and its regulatory mechanism].
Nan Fang Yi Ke Da Xue Xue Bao. 2024 Apr 20;44(4):757-764. doi: 10.12122/j.issn.1673-4254.2024.04.18.
5
Transcriptional Response of to Cinnamaldehyde Treatment.
J Microbiol Biotechnol. 2024 Mar 28;34(3):538-546. doi: 10.4014/jmb.2311.11043. Epub 2023 Dec 25.

本文引用的文献

2
Haloalkaliphilic denitrifiers-dependent sulfate-reducing bacteria thrive in nitrate-enriched environments.
Water Res. 2021 Aug 1;201:117354. doi: 10.1016/j.watres.2021.117354. Epub 2021 Jun 10.
3
Actinobacillus pleuropneumoniae: The molecular determinants of virulence and pathogenesis.
Adv Microb Physiol. 2021;78:179-216. doi: 10.1016/bs.ampbs.2020.12.001. Epub 2021 Jan 25.
5
Nitrate- and Nitrite-Sensing Histidine Kinases: Function, Structure, and Natural Diversity.
Int J Mol Sci. 2021 May 31;22(11):5933. doi: 10.3390/ijms22115933.
6
8
The biosynthesis of the molybdenum cofactors in Escherichia coli.
Environ Microbiol. 2020 Jun;22(6):2007-2026. doi: 10.1111/1462-2920.15003. Epub 2020 Apr 6.
10
Inflammatory monocytes provide a niche for Salmonella expansion in the lumen of the inflamed intestine.
PLoS Pathog. 2019 Jul 15;15(7):e1007847. doi: 10.1371/journal.ppat.1007847. eCollection 2019 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验