Verdoni Angela M, Aoyama Natsuyo, Ikeda Akihiro, Ikeda Sakae
Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
Physiol Genomics. 2008 Jun 12;34(1):9-21. doi: 10.1152/physiolgenomics.00285.2007. Epub 2008 Apr 1.
Remodeling of the actin cytoskeleton through actin dynamics (assembly and disassembly of filamentous actin) is known to be essential for numerous basic biological processes. In addition, recent studies have provided evidence that actin dynamics participate in the control of gene expression. A spontaneous mouse mutant, corneal disease 1 (corn1), is deficient for a regulator of actin dynamics, destrin (DSTN, also known as ADF), which causes epithelial hyperproliferation and neovascularization in the cornea. Dstn(corn1) mice exhibit an actin dynamics defect in the corneal epithelial cells, offering an in vivo model to investigate cellular mechanisms affected by the Dstn mutation and resultant actin dynamics abnormalities. To examine the effect of the Dstn(corn1) mutation on the gene expression profile, we performed a microarray analysis using the cornea from Dstn(corn1) and wild-type mice. A dramatic alteration of the gene expression profile was observed in the Dstn(corn1) cornea, with 1,226 annotated genes differentially expressed. Functional annotation of these genes revealed that the most significantly enriched functional categories are associated with actin and/or cytoskeleton. Among genes that belong to these categories, a considerable number of serum response factor target genes were found, indicating the possible existence of an actin-SRF pathway of transcriptional regulation in vivo. A comparative study using an allelic mutant strain with milder corneal phenotypes suggested that the level of filamentous actin may correlate with the level of gene expression changes. Our study shows that Dstn mutations and resultant actin dynamics abnormalities have a strong impact on the gene expression profile in vivo.
通过肌动蛋白动力学(丝状肌动蛋白的组装和解聚)对肌动蛋白细胞骨架进行重塑,已知对众多基本生物学过程至关重要。此外,最近的研究提供了证据表明肌动蛋白动力学参与基因表达的调控。一种自发的小鼠突变体,角膜疾病1(corn1),缺乏一种肌动蛋白动力学调节因子,肌动蛋白解聚因子(DSTN,也称为ADF),这导致角膜上皮细胞过度增殖和新生血管形成。Dstn(corn1)小鼠在角膜上皮细胞中表现出肌动蛋白动力学缺陷,提供了一个体内模型来研究受Dstn突变和由此产生的肌动蛋白动力学异常影响的细胞机制。为了检查Dstn(corn1)突变对基因表达谱的影响,我们使用Dstn(corn1)和野生型小鼠的角膜进行了微阵列分析。在Dstn(corn1)角膜中观察到基因表达谱的显著改变,有1226个注释基因差异表达。对这些基因的功能注释显示,最显著富集的功能类别与肌动蛋白和/或细胞骨架相关。在属于这些类别的基因中,发现了相当数量的血清反应因子靶基因,表明体内可能存在转录调控的肌动蛋白-SRF途径。使用具有较轻角膜表型的等位基因突变株进行的比较研究表明,丝状肌动蛋白的水平可能与基因表达变化的水平相关。我们的研究表明,Dstn突变和由此产生的肌动蛋白动力学异常对体内基因表达谱有强烈影响。