Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
Department of Biology and Biotechnology, The Hashemite University, Zarqa 13115, Jordan.
Cells. 2021 Oct 12;10(10):2726. doi: 10.3390/cells10102726.
Proteins of the actin depolymerizing factor (ADF)/cofilin family are ubiquitous among eukaryotes and are essential regulators of actin dynamics and function. Mammalian neurons express cofilin-1 as the major isoform, but ADF and cofilin-2 are also expressed. All isoforms bind preferentially and cooperatively along ADP-subunits in F-actin, affecting the filament helical rotation, and when either alone or when enhanced by other proteins, promotes filament severing and subunit turnover. Although self-regulating cofilin-mediated actin dynamics can drive motility without post-translational regulation, cells utilize many mechanisms to locally control cofilin, including cooperation/competition with other proteins. Newly identified post-translational modifications function with or are independent from the well-established phosphorylation of serine 3 and provide unexplored avenues for isoform specific regulation. Cofilin modulates actin transport and function in the nucleus as well as actin organization associated with mitochondrial fission and mitophagy. Under neuronal stress conditions, cofilin-saturated F-actin fragments can undergo oxidative cross-linking and bundle together to form cofilin-actin rods. Rods form in abundance within neurons around brain ischemic lesions and can be rapidly induced in neurites of most hippocampal and cortical neurons through energy depletion or glutamate-induced excitotoxicity. In ~20% of rodent hippocampal neurons, rods form more slowly in a receptor-mediated process triggered by factors intimately connected to disease-related dementias, e.g., amyloid-β in Alzheimer's disease. This rod-inducing pathway requires a cellular prion protein, NADPH oxidase, and G-protein coupled receptors, e.g., CXCR4 and CCR5. Here, we will review many aspects of cofilin regulation and its contribution to synaptic loss and pathology of neurodegenerative diseases.
肌动蛋白解聚因子 (ADF)/丝切蛋白家族的蛋白在真核生物中普遍存在,是肌动蛋白动态和功能的重要调节因子。哺乳动物神经元表达的主要同工型为丝切蛋白-1,但也表达 ADF 和丝切蛋白-2。所有同工型都优先与 F-肌动蛋白中的 ADP 亚基结合并协同作用,影响丝状螺旋旋转,当它们单独存在或以其他蛋白增强时,促进丝状切割和亚基转换。虽然自我调节的丝切蛋白介导的肌动蛋白动力学可以在没有翻译后调节的情况下驱动运动,但细胞利用许多机制来局部控制丝切蛋白,包括与其他蛋白的合作/竞争。新发现的翻译后修饰与丝氨酸 3 的磷酸化作用相关或独立,为同工型特异性调节提供了未探索的途径。丝切蛋白调节细胞核中的肌动蛋白运输和功能,以及与线粒体裂变和线粒体自噬相关的肌动蛋白组织。在神经元应激条件下,丝切蛋白饱和的 F-肌动蛋白片段可以发生氧化交联并聚集在一起形成丝切蛋白-肌动蛋白棒。在大脑缺血性损伤周围的神经元中,棒大量形成,并且可以通过能量耗竭或谷氨酸诱导的兴奋性毒性快速诱导大多数海马和皮质神经元的神经突中的形成。在约 20%的啮齿动物海马神经元中,棒在由与疾病相关的痴呆症密切相关的因素触发的受体介导过程中缓慢形成,例如阿尔茨海默病中的淀粉样蛋白-β。这种诱导棒形成的途径需要细胞朊蛋白、NADPH 氧化酶和 G 蛋白偶联受体,例如 CXCR4 和 CCR5。在这里,我们将综述丝切蛋白调节的许多方面及其对突触丧失和神经退行性疾病病理学的贡献。