Suppr超能文献

在横断面基因关联研究中,Cox比例风险模型比逻辑回归模型具有更强的统计效能。

Cox proportional hazards models have more statistical power than logistic regression models in cross-sectional genetic association studies.

作者信息

van der Net Jeroen B, Janssens A Cecile J W, Eijkemans Marinus J C, Kastelein John J P, Sijbrands Eric J G, Steyerberg Ewout W

机构信息

Department of Public Health, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.

出版信息

Eur J Hum Genet. 2008 Sep;16(9):1111-6. doi: 10.1038/ejhg.2008.59. Epub 2008 Apr 2.

Abstract

Cross-sectional genetic association studies can be analyzed using Cox proportional hazards models with age as time scale, if age at onset of disease is known for the cases and age at data collection is known for the controls. We assessed to what degree and under what conditions Cox proportional hazards models have more statistical power than logistic regression models in cross-sectional genetic association analyses. Analyses were conducted in an empirical study on the association of 65 polymorphisms and risk of coronary heart disease among 2400 familial hypercholesterolemia patients, and in a simulation study that considered various combinations of sample size, genotype frequency, and strength of association between the genotype and coronary heart disease. We applied Cox proportional hazards models and logistic regression models, and compared effect estimates (hazard ratios and odds ratios) and statistical power. In the empirical study, Cox proportional hazards models generally showed lower P-values for polymorphisms than logistic regression models. In the simulation study, Cox proportional hazards models had higher statistical power in all scenarios. Absolute differences in power did depend on the effect estimate, genotype frequency and sample size, and were most prominent for genotypes with minor effects. For example, when the genotype frequency was 30% in a sample with size n=2000 individuals, the absolute differences were the largest for effect estimates between 1.1 and 1.5. In conclusion, Cox proportional hazards models can increase statistical power in cross-sectional genetic association studies, especially in the range of effect estimates that are expected for genetic associations in common diseases.

摘要

如果病例的疾病发病年龄已知且对照的数据收集年龄已知,横断面基因关联研究可以使用以年龄为时间尺度的Cox比例风险模型进行分析。我们评估了在横断面基因关联分析中,Cox比例风险模型在何种程度以及何种条件下比逻辑回归模型具有更大的统计效能。我们在一项关于2400名家族性高胆固醇血症患者中65种多态性与冠心病风险关联的实证研究中,以及在一项考虑样本量、基因型频率和基因型与冠心病之间关联强度的各种组合的模拟研究中进行了分析。我们应用了Cox比例风险模型和逻辑回归模型,并比较了效应估计值(风险比和比值比)和统计效能。在实证研究中,对于多态性,Cox比例风险模型通常比逻辑回归模型显示出更低的P值。在模拟研究中,Cox比例风险模型在所有情况下都具有更高的统计效能。效能的绝对差异确实取决于效应估计值、基因型频率和样本量,并且对于效应较小的基因型最为显著。例如,当样本量n = 2000人时,基因型频率为30%,效应估计值在1.1至1.5之间时,绝对差异最大。总之,Cox比例风险模型可以提高横断面基因关联研究的统计效能,特别是在常见疾病基因关联预期的效应估计范围内。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验